2 research outputs found

    Fast algorithms for collision and proximity problems involving moving geometric objects

    No full text
    Consider a set of geometric objects, such as points, line segments, or axes-parallel hyperrectangles in \IR^d, that move with constant but possibly different velocities along linear trajectories. Efficient algorithms are presented for several problems defined on such objects, such as determining whether any two objects ever collide and computing the minimum inter-point separation or minimum diameter that ever occurs. The strategy used involves reducing the given problem on moving objects to a different problem on a set of static objects, and then solving the latter problem using techniques based on sweeping, orthogonal range searching, simplex composition, and parametric search
    corecore