295,808 research outputs found

    Exponential Family Estimation via Adversarial Dynamics Embedding

    Get PDF
    We present an efficient algorithm for maximum likelihood estimation (MLE) of exponential family models, with a general parametrization of the energy function that includes neural networks. We exploit the primal-dual view of the MLE with a kinetics augmented model to obtain an estimate associated with an adversarial dual sampler. To represent this sampler, we introduce a novel neural architecture, dynamics embedding, that generalizes Hamiltonian Monte-Carlo (HMC). The proposed approach inherits the flexibility of HMC while enabling tractable entropy estimation for the augmented model. By learning both a dual sampler and the primal model simultaneously, and sharing parameters between them, we obviate the requirement to design a separate sampling procedure once the model has been trained, leading to more effective learning. We show that many existing estimators, such as contrastive divergence, pseudo/composite-likelihood, score matching, minimum Stein discrepancy estimator, non-local contrastive objectives, noise-contrastive estimation, and minimum probability flow, are special cases of the proposed approach, each expressed by a different (fixed) dual sampler. An empirical investigation shows that adapting the sampler during MLE can significantly improve on state-of-the-art estimators

    Clustering-Based Predictive Process Monitoring

    Full text link
    Business process enactment is generally supported by information systems that record data about process executions, which can be extracted as event logs. Predictive process monitoring is concerned with exploiting such event logs to predict how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The predicate can be, for example, a temporal logic constraint or a time constraint, or any predicate that can be evaluated over a completed trace. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous traces are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data to discriminate between fulfillments and violations. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital

    Flow Forecasting for Leakage Burst Prediction in Water Distribution Systems using Long Short-Term Memory Neural Networks and Kalman Filtering

    Get PDF
    Reducing pipe leakage is one of the top priorities for water companies, with many investing in higher quality sensor coverage to improve flow forecasting and detection of leaks. Most research on this topic is focused on leakage detection through the analysis of sensor data from district metered areas (DMAs), aiming to identify bursts after their occurrence. This study is a step towards the development of ‘self-healing’ water infrastructure systems. In particular, machine learning and deep learning-based algorithms are applied to forecasting the anomalous water flow experienced during bursts (new leakage) in DMAs at various temporal scales, thereby aiding in the health monitoring of water distribution systems. This study uses a dataset for over 2,000 DMAs in Yorkshire, containing flow time series recorded at 15-minute intervals over one year. Firstly, the method of isolation forests is used to identify anomalies in the dataset, which are verified as corresponding to entries in the water mains repair log, indicating the occurrence of bursts. Going beyond leakage detection, this research proposes a hybrid deep learning framework named FLUIDS (Forecasting Leakage and Usual flow Intelligently in Distribution Systems). A recurrent neural network (RNN) is used for mean flow forecasting, which is then combined with forecasted residuals obtained through real-time Kalman filter. While providing expected day-to-day flow demands, this framework also aims to issue sufficient early warning for any upcoming anomalous flow or possible leakages. For a given forecast period, the FLUIDS framework can be used to compute the probability of flow exceeding a pre-defined threshold, thus allowing decisions to be made regarding any necessary interventions. This can inform targeted repair strategies that best utilize resources to minimize leakage and disruptions by addressing detected and predicted burst events. The proposed FLUIDS framework is statistically assessed and compared against state-of-practice minimum night flow (MNF) methodology. Finally, it is concluded that the framework performs well on the unobserved test dataset for both regular and leakage water flows

    Flow forecasting for leakage burst prediction in water distribution systems using long short-term memory neural networks and Kalman filtering

    Get PDF
    Reducing pipe leakage is one of the top priorities for water companies, with many investing in higher quality sensor coverage to improve flow forecasting and detection of leaks. Most research on this topic is focused on leakage detection through the analysis of sensor data from district metered areas (DMAs), aiming to identify bursts after their occurrence. This study is a step towards the development of ‘self-healing’ water infrastructure systems. In particular, machine learning and deep learning-based algorithms are applied to forecasting the anomalous water flow experienced during bursts (new leakage) in DMAs at various temporal scales, thereby aiding in the health monitoring of water distribution systems. This study uses a dataset of over 2,000 DMAs in North Yorkshire, UK, containing flow time series recorded at 15-minute intervals for a period of one year. Firstly, the method of isolation forests is used to identify anomalies in the dataset, which are cross referenced with entries in the water mains repair log, indicating the occurrence of bursts. Going beyond leakage detection, this research proposes a hybrid deep learning framework named FLUIDS (Forecasting Leakage and Usual flow Intelligently in water Distribution Systems). A recurrent neural network (RNN) is used for mean flow forecasting, which is then combined with forecasted residuals obtained through real-time Kalman filtering. While providing expected day-to-day flow demands, this framework also aims to issue sufficient early warning for any upcoming anomalous flow or possible leakages. For a given forecast period, the FLUIDS framework can be used to compute the probability of flow exceeding a pre-defined threshold, thus allowing decision-making for any necessary interventions. This can inform targeted repair strategies that best utilize resources to minimize leakages and disruptions. The FLUIDS framework is statistically assessed and compared against the state-of-practice minimum night flow (MNF) methodology. Based on the statistical analyses, it is concluded that the proposed framework performs well on the unobserved test dataset for both regular and leakage water flows.</p
    • …
    corecore