16,793 research outputs found

    Psychophysical identity and free energy

    Get PDF
    An approach to implementing variational Bayesian inference in biological systems is considered, under which the thermodynamic free energy of a system directly encodes its variational free energy. In the case of the brain, this assumption places constraints on the neuronal encoding of generative and recognition densities, in particular requiring a stochastic population code. The resulting relationship between thermodynamic and variational free energies is prefigured in mind-brain identity theses in philosophy and in the Gestalt hypothesis of psychophysical isomorphism.Comment: 22 pages; published as a research article on 8/5/2020 in Journal of the Royal Society Interfac

    Penalized Estimation of Directed Acyclic Graphs From Discrete Data

    Full text link
    Bayesian networks, with structure given by a directed acyclic graph (DAG), are a popular class of graphical models. However, learning Bayesian networks from discrete or categorical data is particularly challenging, due to the large parameter space and the difficulty in searching for a sparse structure. In this article, we develop a maximum penalized likelihood method to tackle this problem. Instead of the commonly used multinomial distribution, we model the conditional distribution of a node given its parents by multi-logit regression, in which an edge is parameterized by a set of coefficient vectors with dummy variables encoding the levels of a node. To obtain a sparse DAG, a group norm penalty is employed, and a blockwise coordinate descent algorithm is developed to maximize the penalized likelihood subject to the acyclicity constraint of a DAG. When interventional data are available, our method constructs a causal network, in which a directed edge represents a causal relation. We apply our method to various simulated and real data sets. The results show that our method is very competitive, compared to many existing methods, in DAG estimation from both interventional and high-dimensional observational data.Comment: To appear in Statistics and Computin
    • …
    corecore