7 research outputs found

    Minimum Energy to Send kk Bits Over Multiple-Antenna Fading Channels

    Full text link
    This paper investigates the minimum energy required to transmit kk information bits with a given reliability over a multiple-antenna Rayleigh block-fading channel, with and without channel state information (CSI) at the receiver. No feedback is assumed. It is well known that the ratio between the minimum energy per bit and the noise level converges to 1.59-1.59 dB as kk goes to infinity, regardless of whether CSI is available at the receiver or not. This paper shows that lack of CSI at the receiver causes a slowdown in the speed of convergence to 1.59-1.59 dB as kk\to\infty compared to the case of perfect receiver CSI. Specifically, we show that, in the no-CSI case, the gap to 1.59-1.59 dB is proportional to ((logk)/k)1/3((\log k) /k)^{1/3}, whereas when perfect CSI is available at the receiver, this gap is proportional to 1/k1/\sqrt{k}. In both cases, the gap to 1.59-1.59 dB is independent of the number of transmit antennas and of the channel's coherence time. Numerically, we observe that, when the receiver is equipped with a single antenna, to achieve an energy per bit of 1.5 - 1.5 dB in the no-CSI case, one needs to transmit at least 7×1077\times 10^7 information bits, whereas 6×1046\times 10^4 bits suffice for the case of perfect CSI at the receiver

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor

    Beta-Beta Bounds: Finite-Blocklength Analog of the Golden Formula

    Get PDF
    It is well known that the mutual information between two random variables can be expressed as the difference of two relative entropies that depend on an auxiliary distribution, a relation sometimes referred to as the golden formula. This paper is concerned with a finite-blocklength extension of this relation. This extension consists of two elements: 1) a finite-blocklength channel-coding converse bound by Polyanskiy and Verd\'{u} (2014), which involves the ratio of two Neyman-Pearson β\beta functions (beta-beta converse bound); and 2) a novel beta-beta channel-coding achievability bound, expressed again as the ratio of two Neyman-Pearson β\beta functions. To demonstrate the usefulness of this finite-blocklength extension of the golden formula, the beta-beta achievability and converse bounds are used to obtain a finite-blocklength extension of Verd\'{u}'s (2002) wideband-slope approximation. The proof parallels the derivation of the latter, with the beta-beta bounds used in place of the golden formula. The beta-beta (achievability) bound is also shown to be useful in cases where the capacity-achieving output distribution is not a product distribution due to, e.g., a cost constraint or structural constraints on the codebook, such as orthogonality or constant composition. As an example, the bound is used to characterize the channel dispersion of the additive exponential-noise channel and to obtain a finite-blocklength achievability bound (the tightest to date) for multiple-input multiple-output Rayleigh-fading channels with perfect channel state information at the receiver.Comment: to appear in IEEE Transactions on Information Theor

    Minimum Energy to Send kk Bits Over Multiple-Antenna Fading Channels

    No full text
    This paper investigates the minimum energy required to transmit k information bits with a given reliability over a multiple-antenna Rayleigh block-fading channel, with and without channel state information (CSI) at the receiver. No feedback is assumed. It is well known that the ratio between the minimum energy per bit and the noise level converges to 1:59 dB as k goes to infinity, regardless of whether CSI is available at the receiver or not. This paper shows that lack of CSI at the receiver causes a slowdown in the speed of convergence to -1:59 dB as k → ∞ compared to the case of perfect receiver CSI. Specifically, we show that, in the no-CSI case, the gap to -1:59 dB is proportional to ((log k)/k)1/3, whereas when perfect CSI is available at the receiver, this gap is proportional to 1/√k. In both cases, the gap to -1:59 dB is independent of the number of transmit antennas and of the channel's coherence time. Numerically, we observe that, when the receiver is equipped with a single antenna, to achieve an energy per bit of -1:5 dB in the no-CSI case, one needs to transmit at least 7×107 information bits, whereas 6 × 104 bits suffice for the case of perfect CSI at the receiver (same number of bits as for nonfading AWGN channels). Interestingly, all results (asymptotic and numerical) are unchanged if multiple transmit antennas and/or block fading is assumed

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (d-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff

    Minimum Energy to Send kk Bits Over Multiple-Antenna Fading Channels

    No full text

    Coherent multiple-antenna block-fading channels at finite blocklength

    Full text link
    In this paper we consider a channel model that is often used to describe the mobile wireless scenario: multiple-antenna additive white Gaussian noise channels subject to random (fading) gain with full channel state information at the receiver. Dynamics of the fading process are approximated by a piecewise-constant process (frequency non-selective isotropic block fading). This work addresses the finite blocklength fundamental limits of this channel model. Specifically, we give a formula for the channel dispersion -- a quantity governing the delay required to achieve capacity. Multiplicative nature of the fading disturbance leads to a number of interesting technical difficulties that required us to enhance traditional methods for finding channel dispersion. Alas, one difficulty remains: the converse (impossibility) part of our result holds under an extra constraint on the growth of the peak-power with blocklength. Our results demonstrate, for example, that while capacities of nt×nrn_t\times n_r and nr×ntn_r \times n_t antenna configurations coincide (under fixed received power), the coding delay can be quite sensitive to this switch. For example, at the received SNR of 2020 dB the 16×10016\times 100 system achieves capacity with codes of length (delay) which is only 60%60\% of the length required for the 100×16100\times 16 system. Another interesting implication is that for the MISO channel, the dispersion-optimal coding schemes require employing orthogonal designs such as Alamouti's scheme -- a surprising observation considering the fact that Alamouti's scheme was designed for reducing demodulation errors, not improving coding rate. Finding these dispersion-optimal coding schemes naturally gives a criteria for producing orthogonal design-like inputs in dimensions where orthogonal designs do not exist
    corecore