
1

Beta-Beta Bounds: Finite-Blocklength Analog of
the Golden Formula

Wei Yang, Member, IEEE, Austin Collins, Giuseppe Durisi Senior Member, IEEE,
Yury Polyanskiy Senior Member, IEEE, and H. Vincent Poor Fellow, IEEE

Abstract—It is well known that the mutual information be-
tween two random variables can be expressed as the difference of
two relative entropies that depend on an auxiliary distribution, a
relation sometimes referred to as the golden formula. This paper
is concerned with a finite-blocklength extension of this relation.
This extension consists of two elements: 1) a finite-blocklength
channel-coding converse bound by Polyanskiy and Verdú (2014),
which involves the ratio of two Neyman-Pearson β functions
(beta-beta converse bound); and 2) a novel beta-beta channel-
coding achievability bound, expressed again as the ratio of two
Neyman-Pearson β functions.

To demonstrate the usefulness of this finite-blocklength ex-
tension of the golden formula, the beta-beta achievability and
converse bounds are used to obtain a finite-blocklength extension
of Verdú’s (2002) wideband-slope approximation. The proof
parallels the derivation of the latter, with the beta-beta bounds
used in place of the golden formula.

The beta-beta (achievability) bound is also shown to be useful
in cases where the capacity-achieving output distribution is
not a product distribution due to, e.g., a cost constraint or
structural constraints on the codebook, such as orthogonality
or constant composition. As an example, the bound is used to
characterize the channel dispersion of the additive exponential-
noise channel and to obtain a finite-blocklength achievability
bound (the tightest to date) for multiple-input multiple-output
Rayleigh-fading channels with perfect channel state information
at the receiver.

Index Terms—Channel coding, achievability bound, hypothesis
testing, golden formula, finite-blocklength regime.

I. INTRODUCTION

A. Background

In his landmark 1948 paper [1], Shannon established the
noisy channel coding theorem, which expresses the fundamen-
tal limit of reliable data transmission over a noisy channel
in terms of the mutual information I(X;Y ) between the
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input X and the output Y of the channel. More specifically, for
stationary memoryless channels, the maximum rate at which
data can be transmitted reliably is the channel capacity

C = sup
PX

I(X;Y ). (1)

Here, reliable transmission means that the probability of error
can be made arbitrarily small by mapping the information bits
into sufficiently long codewords. In the nonasymptotic regime
of fixed blocklength (fixed codeword size), there exists a
tension between rate and error probability, which is partly cap-
tured by the many nonasymptotic (finite-blocklength) bounds
available in the literature [2]–[5]. In many of these bounds,
the role of the mutual information is taken by the so-called
(mutual) information density1

i(X;Y ) , log
dPXY

d(PXPY )
(X,Y ) (2)

or information spectrum [6], [7]. While the various prop-
erties enjoyed by the mutual information make the eval-
uation of capacity relatively simple, computing the finite-
blocklength bounds that involve the information density (e.g.,
the information-spectrum bounds [2]–[4]) can be very chal-
lenging.

One well-known property of the mutual information is that it
can be expressed as a difference of relative entropies involving
an arbitrary output distribution QY [8, Eq. (8.7)]:

I(X;Y ) = D(PXY ‖PXQY )−D(PY ‖QY ). (3)

Here, D(·‖·) stands for the relative entropy. This identity—
also known as the golden formula [9, Th. 3.3] or Topsøe’s
identity [10]—has found many applications in information
theory. One canonical application is to establish upper bounds
on channel capacity [11]. Indeed, substituting (3) into (1), we
get an alternative expression for channel capacity

C = max
PX

{
D(PXY ‖PXQY )−D(PY ‖QY )

}
(4)

from which an upper bound on C can be obtained by dropping
the term −D(PY ‖QY ). The golden formula is also used in the
derivation of the capacity per unit cost [12] and the wideband
slope [13], in the Blahut-Arimoto algorithm [14], [15], and in
Gallager’s formula for the minimax redundancy in universal
source coding [16]. Furthermore, it is useful for characterizing
the properties of good channel codes [17], [18], and it is often

1In this paper, log and exp functions are taken with respect to the same
arbitrary basis.
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used in statistics to prove lower bounds on the minimax risk
via Fano’s inequality (see [19] and [20]).

The main purpose of this paper is to provide a finite-
blocklength analog of (4) that is helpful in deriving nonasymp-
totic results in the same way in which (4) is helpful in the
asymptotic case.2 Note that a naı̈ve way to derive such a finite-
blocklength analog would be to rewrite the information density
in the information-spectrum bounds as follows:

i(X;Y ) = log
dPXY

d(PXQY )
(X;Y )− log

dPY
dQY

(X;Y ). (5)

However, the resulting bounds are not very useful, because it
is difficult to decouple the two random variables on the right-
hand side (RHS) of (5). Instead of tweaking the information-
spectrum bounds via (5), we derive a finite-blocklength analog
of (4) from first principles.

To summarize our contribution, we need to first introduce
some notation. We consider an abstract channel that consists of
an input set A, an output set B, and a random transformation
PY |X : A → B. An (M, ε) code for the channel (A, PY |X ,B)

comprises a message set M , {1, . . . ,M}, an encoder f :
M→A, and a decoder g : B →M∪{e} (e denotes the error
event) that satisfies the average error probability constraint

1

M

M∑
j=1

(
1− PY |X

(
g−1(j) | f(j)

))
≤ ε. (6)

Here, g−1(j) , {y ∈ Y : g(y) = j}. In practical applications,
we often take A and B to be n-fold Cartesian products of
two alphabets X and Y , and the channel to be a sequence of
conditional probabilities PY n |Xn : Xn → Yn. We shall refer
to an (M, ε) code for the channel {Xn, PY n |Xn ,Yn} as an
(n,M, ε) code.

Binary hypothesis testing, which we introduce next, will
play an important role. Given two probability measures P and
Q on a common measurable space X , we define a randomized
test between P and Q as a random transformation PZ |X :
X → {0, 1}, where 0 indicates that the test chooses Q. The
optimal performance achievable among all such randomized
tests is given by the Neyman-Pearson function βα(P,Q),
which is defined as

βα(P,Q) , min

∫
PZ |X(1 |x)Q(dx) (7)

where the minimum is over all tests satisfying∫
PZ |X(1 |x)P (dx) ≥ α. (8)

The Neyman-Pearson lemma [21] provides the optimal test
PZ|X that attains the minimum in (7). This test, which we shall
refer to as the Neyman-Pearson test, involves thresholding the
Radon-Nikodym derivative of P with respect to Q.

2With a slight abuse in terminology, we shall refer to both (3) and (4) as
the golden formula.

B. Finite-Blocklength Analog of the Golden Formula

A first step towards establishing a finite-blocklength analog
of the golden formula was recently provided by Polyanskiy
and Verdú, who proved that every (n,M, ε) code satisfies the
following converse bound [18, Th. 15]:

M ≤ inf
0≤δ<1−ε

β1−δ(PY n , QY n)

β1−ε−δ(PXnY n , PXnQY n)
, ∀QY n . (9)

Here, PXn and PY n denote the empirical input and output
distributions induced by the code for the case of uniformly
distributed messages. The proof of (9) is a refinement of the
meta-converse theorem [5, Th. 26], in which the decoder is
used as a suboptimal test for discriminating PXnY n against
PXnQY n . We shall refer to the converse bound (9) as the ββ
converse bound. Note that the special case of δ = 0, which
is known as the minimax meta-converse bound, has a long
history in information theory as surveyed in [5, Sec. II.D] for
the classical case and [22] for quantum channels.

In this paper, we provide the following achievability coun-
terpart of (9): for every 0 < ε < 1 and every input distribution
PXn , there exists an (n,M, ε) code such that

M

2
≥ sup

0<τ<ε

βτ (PY n , QY n)

β1−ε+τ (PXnY n , PXnQY n)
, ∀QY n (10)

where PY n denotes the distribution of Y n induced by PXn

through PY n|Xn . The proof of the ββ achievability bound
above relies on Shannon’s random coding technique and on
a suboptimal decoder that is based on the Neyman-Pearson
test between PXnY n and PXnQY n . Hypothesis testing is used
twice in the proof: to relate the decoding error probability
to β1−ε+τ (PXnY n , PXnQY n), and to perform a change of
measure from PY n to QY n . Fig. 1 gives a pictorial summary of
the connections between the ββ bounds and various capacity
and nonasymptotic bounds. The analogy between the ββ
bounds (9)–(10) and the golden formula follows because, for
product distributions Pn and Qn,

− 1

n
log βα(Pn, Qn) = D(P‖Q) + o(1), ∀α ∈ (0, 1) (11)

as n → ∞ by Stein’s lemma [23, Th. 11.8.3]. For example,
one can prove that (4) is achievable using (10) as follows: set
PXn = (PX)n and QY n = (QY )n, take the log of both sides
of (10), use Stein’s lemma and optimize over PX .

C. Applications

To demonstrate that the ββ bounds (9) and (10) are the
natural nonasymptotic equivalent of the golden formula, we
use them to provide a finite-blocklength extension of the wide-
band slope approximation of Verdú [13]. More specifically,
we derive a second-order characterization of the minimum
energy per bit E∗b(k, ε, R) required to transmit k bits with
error probability ε and rate R on additive white Gaussian
noise (AWGN) channels and also on Rayleigh-fading channels
with perfect channel state information available at the receiver
(CSIR). Our result implies that E∗b(k, ε, R) (expressed in dB)
can be approximated by an affine function of the rate R.
Furthermore, the slope of this function coincides with the
wideband slope by Verdú. Our proof parallels the derivation
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Asymptotic Nonasymptotic

Golden formula:

I(X;Y ) = D(PXY ||PXQY )

−D(PY ||QY )

ββ bounds:

M

2
≥ βτ (PY n , QY n)

β1−ε+τ (PXnY n , PXnQY n)

M ≤ β1−δ(PY n , QY n)

β1−ε−δ(PXnY n , PXnQY n)

⇐

Duality bound [11]:

C ≤ max
PX

D(PXY ||PXQY )
⇐

Minimax converse bound:

M ≤ sup
PXn

1

β1−ε(PXnY n , PXnQY n)

⇓
⇓

Fig. 1. Connections between the golden formula and nonasymptotic ββ bounds.

of the latter in [13], except that the role of the golden formula
is taken by the ββ bounds (9) and (10). Numerical evaluations
demonstrate the accuracy of the resulting approximation.

The ββ achievability bound (10) is also useful in situations
where PY n is not a product distribution (although the under-
lying channel law PY n|Xn is stationary and memoryless), for
example due to a cost constraint, or a structural constraint on
the channel inputs, such as orthogonality or constant compo-
sition. In such cases, traditional achievability bounds such as
Feinstein’s bound [2] or the dependence-testing (DT) bound [5,
Th. 18], which are expressed in terms of the information
density, become difficult to evaluate. In contrast, the ββ
bound (10) requires the evaluation of dPY n|Xn/dQY n , which
factorizes when QY n is chosen to be a product distribution.
This allows for an analytical computation of (10). Furthermore,
the term βτ (PY n , QY n), which captures the cost of the change
of measure from PY n to QY n , can be evaluated or bounded
even when a closed-form expression for PY n is not available.
To illustrate these points:
• We use the ββ achievability bound to characterize the

channel dispersion [5, Def. 1] of the additive exponential
noise channel introduced in [24].

• We evaluate (10) for the case of multiple-input multiple-
output (MIMO) Rayleigh-fading channels with perfect
CSIR. In this case, (10) yields the tightest known achiev-
ability bound.

D. Notation

For an input distribution PX and a channel PY |X , we let
PX◦PY |X denote the distribution of Y induced by PX through
PY |X . The distribution of a circularly symmetric complex
Gaussian random vector with covariance matrix A is denoted
by CN (0,A). We denote by χ2

k(λ) the noncentral chi-squared
distribution with k degrees of freedom and noncentrality
parameter λ; furthermore, Exp(µ) stands for the exponential
distribution with mean µ. The Frobenius norm of a matrix A

is denoted by ‖A‖F. For a vector x = (x1, . . . , xd), we let
‖x‖, ‖x‖4, and ‖x‖∞ denote the `2, `4, and `∞ norms of
x, respectively. The real part and the complex conjugate of a
complex number x are denoted by Re(x) and x∗, respectively.
For a set A, we use |A| and Ac to denote the set cardinality
and the set complement, respectively. Finally, d·e denotes the
ceiling function, and the superscript H stands for Hermitian
transposition.

II. THE ββ ACHIEVABILITY BOUND

In this section, we formally state our ββ achievability
bound.

Theorem 1 (ββ achievability bound): For every 0 < ε < 1
and every input distribution PX , there exists an (M, ε) code
for the channel (A, PY |X ,B) satisfying

M

2
≥ sup

0<τ<ε
sup
QY

βτ (PY , QY )

β1−ε+τ (PXY , PXQY )
(12)

where PY = PX ◦ PY |X .
Proof: Fix ε ∈ (0, 1), τ ∈ (0, ε), and let PX and QY be

two arbitrary probability measures on A and B, respectively.
Furthermore, let

M =

⌈
2βτ (PY , QY )

β1−ε+τ (PXY , PXQY )

⌉
. (13)

Finally, let PZ |XY : A×B → {0, 1} be the Neyman-Pearson
test that satisfies

PXY [Z(X,Y ) = 1] ≥ 1− ε+ τ (14)
PXQY [Z(X,Y ) = 1] = β1−ε+τ (PXY , PXQY ). (15)

In words, (X,Y ) may be distributed either according to PXY
or according to PXQY , and Z(X,Y ) = 1 means that the
test chooses PXY . For a given codebook {c1, . . . , cM} and a
received signal y, the decoder computes the values of Z(cj , y)
and returns the smallest index j for which Z(cj , y) = 1. If no
such index is found, the decoder declares an error. The average
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probability of error of the given codebook {c1, . . . , cM}, under
the assumption of uniformly distributed messages, is given by

Pe(c1, . . . , cM )

= P
[{
Z(cW , Y ) = 0

}
∪
( ⋃
m<W

{
Z(cm, Y ) = 1

})]
(16)

where W is equiprobable on {1, . . . ,M} and Y ∼ PY |W .
Following Shannon’s random coding idea, we next aver-

age (16) over all codebooks {C1, . . . , CM} whose codewords
are generated as pairwise independent random variables with
distribution PX . This yields

E[Pe(C1, . . . , CM )]

≤ P
[
Z(X,Y ) = 0

]
+ P

[
max
m<W

Z(Cm, Y ) = 1

]
(17)

≤ ε− τ + P
[

max
m<W

Z(Cm, Y ) = 1

]
. (18)

Here, (17) follows from the union bound and (18) follows
from (14).

To conclude the proof of (12), it suffices to show that

P
[

max
m<W

Z(Cm, Y ) = 1

]
≤ τ (19)

for the M defined in (13), where the probability is computed
with respect to Y ∼ PY . The idea of the proof is to relate this
probability to a probability computed with respect to Y ∼ QY
via binary hypothesis testing. Consider the randomized test
PZ̃ |Y : Y → {0, 1}

Z̃(y) , max
m<W

Z(Cm, y) (20)

where, as before, W is uniformly distributed on {1, . . . ,M},
and the {Cm} are pairwise independent random variables
with distribution PX . Here, the random variable Y may be
distributed either according to PY or according to QY , and
Z̃(Y ) = 1 indicates that the test chooses PY . It follows that

βPY [Z̃=1](PY , QY )

≤ QY [Z̃(Y ) = 1] (21)

≤ 1

M

M∑
j=1

(j − 1)PXQY [Z(X,Y ) = 1] (22)

=
M − 1

2
PXQY [Z(X,Y ) = 1] (23)

=
M − 1

2
β1−ε+τ (PXY , PXQY ) (24)

≤ βτ (PY , QY ). (25)

Here, (21) follows from (7); (22) follows from (20) and
from the union bound; (24) follows from (15); and (25)
follows from (13). Since the function α 7→ βα(PY , QY ) is
nondecreasing, we conclude that

PY [Z̃ = 1] ≤ τ (26)

which is equivalent to (19).

III. RELATION TO EXISTING ACHIEVABILITY BOUNDS

We next discuss the relation between Theorem 1 and the
achievability bounds available in the literature.

1) The κβ bound [5, Th. 25]: The κβ bound is based
on Feinstein’s maximal coding approach and on a suboptimal
threshold decoder. By further lower-bounding the κ term in
the κβ bound using [25, Lemma 4], we can relax it to the
following bound:

M ≥ sup
0<τ<ε

sup
QY

βτ (PX ◦ PY |X , QY )

supx∈F β1−ε+τ (PY |X=x, QY )
(27)

which holds under the maximum error probability constraint
(cf. (6))

max
j∈{1,...,M}

{
1− PY |X

(
g−1(j) | f(j)

)}
≤ ε. (28)

Here, F ⊂ A denotes the permissible set of codewords, and
PX is an arbitrary distribution on F . Because of the similarity
between (27) and (12), one can interpret the ββ bound as the
average-error-probability counterpart of the κβ bound.3 For
the case in which βα(PY |X=x, QY ) does not depend on x ∈
F , by relaxing M/2 to M in (12) and by using [5, Lemma 29]
we recover (27) under the weaker average-error-probability
formalism. However, for the case in which βα(PY |X=x, QY )
does depend on x ∈ F , the ββ achievability bound (12) can
be both easier to analyze and numerically tighter than the κβ
bound (27) (see Section V-B for an example).

2) The dependence-testing (DT) bound [5, Th. 18]: Setting
QY = PY in (12), using that βτ (PY , PY ) = τ , and rearrang-
ing terms, we obtain

ε ≤ inf
α∈(0,1)

{
1− α+

M

2
βα(PXY , PXPY )

}
. (29)

Further setting α = PXY [log
(
dPXY /d(PXPY )

)
≥

log(M/2)] and using the Neyman-Pearson lemma, we con-
clude that (29) is equivalent to a weakened version of the
DT bound where (M − 1)/2 is replaced by M/2. Since this
weakened version of the DT bound implies both Shannon’s
bound [26] and the bound in [27, Th. 2], the ββ achievability
bound (12) implies these two bounds as well.

A cost-constrained version of the DT bound in which all
codewords belong to a given set F can be found in [5, Th. 20].
A slightly weakened version of [5, Th. 20] (with (M − 1)/2
replaced by M/2) is

ε ≤ QXY
[
log

dQXY
d(QXQY )

(X,Y ) ≤ log
M

2

]
+QX [Fc]

+
M

2
QXQY

[
log

dQXY
d(QXQY )

(X,Y ) ≥ log
M

2

]
. (30)

Here, QXY = QXPY |X , and QY = QX ◦PY |X . For 0 < ε <
1/2, this bound can be derived from (12) by choosing PX [ · ] =

3In fact, the analogy between the κβ bound and the ββ bound is also clear
without applying the relaxation (27). Indeed, the κ term in the κβ bound [5,
Th. 25] defines a relative measure of performance for composite hypothesis
testing between the collection {PY |X=x}x∈F and QY . The βτ (PY , QY )
term in the ββ bound measures the performance of a binary hypothesis
test between PY and QY , where the distribution PY is an average of the
collection of distributions {PY |X=x}x∈F .
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QX [ · ∩ F ]/QX [F ] and by using the following bounds:

βτ (PY , QY ) ≥ βτ (PX , QX) = τQX [F ] (31)
β1−ε+τ (PXY , PXQY )

≤ 1

QX [F ]
β1−(ε−τ)QX [F ](QXY , QXQY ). (32)

Here, (31) follows from the data-processing inequality for
βτ (·, ·) (see, e.g., [28, Sec. V]) and straightforward compu-
tations, and (32) follows from [29, Lemma 25].

3) Refinements of the DT/Feinstein bound through change
of measure: The idea of bounding the probability PY [·] via
a simpler-to-analyze QY [·] has been applied previously in the
literature to evaluate the DT bound and Feinstein’s bound. For
example, the following achievability bound is suggested in [30,
Sec. II]:

ε ≤ inf
γ>0

{
PXY

[
dPXY

d(PXQY )
(X,Y ) ≤ γ

]
+M

(
sup
y

dPY
dQY

(y)

)
PXQY

[
dPXY

d(PXQY )
(X,Y ) ≥ γ

]}
(33)

which is equivalent to

M ≥ sup
0<τ<ε

τ

β1−ε+τ (PXY , PXQY )

(
sup
y

dPY
dQY

(y)

)−1

. (34)

This bound can be obtained from the ββ achievability
bound (12) by using that

βτ (PY , QY ) ≥ τ
(

sup
y

dPY
dQY

(y)

)−1

. (35)

The following variation of the Feinstein bound is used in [31,
Lemma 2] to deal with inputs subject to a cost constraint:

ε ≤ inf
γ>0,η>0

{
PXY

[
dPXY

d(PXQY )
(X,Y ) ≤ γη

]
+
M

γ

+PY

[
dPY
dQY

(Y ) ≥ η
]}

. (36)

This bound can be obtained from (12) by using [5, Eq. (103)]
to lower-bound βτ (PY , QY ) and by using [5, Eq. (102)] to
upper-bound βτ (PXY , PXQY ).

IV. WIDEBAND SLOPE AT FINITE BLOCKLENGTH

A. Background

Many communication systems (such as deep-space com-
munication and sensor networks) operate in the low-power
regime, where both the spectral efficiency and the energy per
bit are low. As shown in [13], the key asymptotic performance
metrics for additive noise channels in the low-power regime
are the normalized minimum energy per bit Eb

N0 min
(where N0

denotes the noise power per channel use) and the slope4 S0 of
the function spectral efficiency versus energy per bit (in dB)
at Eb

N0 min
(known as the wideband slope). These two quantities

determine the first-order behavior of the minimum energy per

4The unit of S0 is bits/ch. use/(3 dB).

bit E∗b(R) as a function of the spectral efficiency5 R (bits/ch.
use) in the limit R→ 0. Specifically, [13, Eq. (28)]

10 log10

E∗b(R)

N0
= 10 log10

Eb

N0 min

+
R

S0
10 log10 2 + o(R),

R→ 0. (37)

For a wide range of power-constrained channels including the
AWGN channel and the fading channel with/without CSIR, it
is well known that the minimum energy per bit satisfies [13],
[32], [33]

Eb

N0 min

= loge 2 = −1.59 dB. (38)

Furthermore, it is shown in [13] that S0 = 2 for AWGN chan-
nels, and S0 = 2E

[
|H|2

]2
/E
[
|H|4

]
for stationary ergodic

fading channels with perfect CSIR, where H is distributed as
one of the fading coefficients.

The asymptotic expansion (37) is derived in [13] under the
assumption that n, k →∞ with k/n→ R and ε→ 0, where k
denotes the number of information bits k (i.e., k = log2M ).
Recently, it was shown in [34] that the minimum energy per bit
E∗b(k, ε) necessary to transmit a finite number k of information
bits over an AWGN channel with error probability ε and with
no constraint on the blocklength satisfies

E∗b(k, ε)

N0
=
Eb

N0 min

+

√
2 loge 2

k
Q−1(ε) + o

(
1√
k

)
. (39)

Furthermore, it was shown in [35] that the expansion (39)
is valid also for block-memoryless Rayleigh-fading channels
(perfect CSIR), provided that 0 < ε < 1/2.

In this section, we study the tradeoff between energy per
bit and spectral efficiency in the regime where not only k
and ε, but also the blocklength n is finite. In particular, we are
interested in the minimum energy per bit E∗b(k, ε, R) necessary
to transmit k information bits with rate R bits/ch. use and
with error probability not exceeding ε. The quantity E∗b(R)
in (37) and E∗b(k, ε) in (39) can be obtained from E∗b(k, ε, R)
as follows:

E∗b(R) = lim
ε→0

lim
k→∞

E∗b(k, ε, R) (40)

E∗b(k, ε) = lim
R→0

E∗b(k, ε, R). (41)

B. AWGN Channel

We consider the complex-valued AWGN channel

Yi = Xi + Zi, i = 1, . . . , n (42)

where Zn ∼ CN (0, N0In). We assume that every code-
word xn satisfies the power constraint

‖xn‖2 =

n∑
i=1

x2
i ≤ nP. (43)

For notational convenience, we shall set N0 = 1. Hence, P
in (43) can be interpreted as the SNR at the receiver.

We next evaluate E∗b(k, ε, R) in the asymptotic regime
k → ∞ and R → 0. Motivated by (37), we shall approx-
imate E∗b(k, ε, R) (expressed in dB) by an affine function

5We shall use the terms spectral efficiency and rate interchangeably.
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of R. The ββ bounds turn out to be key tools to derive the
asymptotic approximation given in Theorem 2 below.

Theorem 2: Consider the AWGN channel (42). The fol-
lowing expansion for E∗b(k, ε, R) holds in the asymptotic
limit k →∞, R→ 0, and kR→∞:

E∗b(k, ε, R)

N0
= loge 2 +

√
2 loge 2

k
Q−1(ε) +

log2
e 2

2
R

+ o

(
1√
k

)
+ o(R). (44)

Equivalently,

10 log10

E∗b(k, ε, R)

N0

= 10 log10

Eb

N0 min

+
R

S0
10 log10 2︸ ︷︷ ︸

wideband slope approximation

+
10 log10 e√

loge 2

√
2

k
Q−1(ε) + o

(
1√
k

)
+ o(R) (45)

where 10 log10
Eb

N0 min
= −1.59 dB, and S0 = 2. If k → ∞,

R→ 0, but kR→ c <∞, then we have

E∗b(k, ε, R)

N0
= loge 2 +

√
2 loge 2

k
Q−1(ε) + o

(
1√
k

)
. (46)

Equivalently,

10 log10

E∗b(k, ε, R)

N0

= 10 log10

Eb

N0 min

+
10 log10 e√

loge 2

√
2

k
Q−1(ε) + o

(
1√
k

)
. (47)

Proof: See Appendix I.
Remark 1: The expansion (45) can be seen as the finite-

blocklength counterpart of (37). Indeed, comparing (45)
with (37), we see that

10 log10

E∗b(k, ε, R)

E∗b(R)

=
10 log10 e√

loge 2

√
2

k
Q−1(ε) + o(R) + o

(
1√
k

)
. (48)

Thus, in the low spectral efficiency regime, the gap in dB
between E∗b(k, ε, R) and the asymptotic limit E∗b(R) (obtained
as k → ∞ and ε → 0) is—up to first order—proportional to
1/
√
k and independent of R. Furthermore, (44) and (39) imply

that

10 log10

E∗b(k, ε, R)

E∗b(k, ε)
=

R

S0
10 log10 2 + o(R) + o

(
1√
k

)
. (49)

Thus, in the regime of large k, the gap in dB between
E∗b(k, ε, R) and the asymptotic limit E∗b(k, ε) is—up to first
order—proportional to R and is independent of k.

Remark 2: The result (46) implies that the minimum energy
per bit E∗b(k, ε) in (39) with no blocklength constraint can be
achieved with codes of rate 1/k, or equivalently, with codes
of blocklength k2. For comparison, the code used in [34] to
achieve (39) has blocklength 2k.

We now provide some intuition for the expansion (44)
(a rigorous proof is given in Appendix I). The asymptotic

expression (37) relies on the following Taylor-series expansion
of the channel capacity C(P ) as a function of the SNR P when
P → 0:

C(P ) = C ′(0)P log e+
C ′′(0)

2
P 2 log e+ o(P 2). (50)

Here, C ′(0) and C ′′(0) denote the first and second derivative,
respectively, of the function C(P ) (in nats per channel use).
In particular, the first term in (50) determines the minimum
energy per bit Eb

N0 min
and the second term in (50) yields the

wideband slope S0 [13, Eq. (35) and Th. 9]:

Eb

N0 min

=
loge 2

C ′(0)
, S0 =

2
[
C ′(0)

]2
−C ′′(0)

. (51)

Both Eb

N0 min
and S0 in (51) can be computed directly, without

the knowledge of C(P ). Indeed, set QY = PY |X=0 in the
golden formula (4). One can show that [13, Eq. (41)]

C ′(0) =
1

log e
lim
P→0

max
PX :E[|X|2]=P

D(PY |X‖QY ‖PX)

P
(52)

and that for both AWGN channels and for fading channels
with perfect CSIR,

C ′′(0) = − 2

log e
lim
P→0

min
PX

D(PY ‖QY )

P 2
(53)

where the minimization in (53) is over all PX that achieve
C ′(0) in (52) and that satisfy E

[
|X|2

]
= P . In other words,

C ′(0) is determined solely by D(PY |X‖QY |PX), and C ′′(0)
is determined solely by D(PY ‖QY ).

Moving to the nonasymptotic case, let R∗(n, ε, P ) be the
maximum coding rate for a given blocklength n, error prob-
ability ε, and SNR P . Then, (44) turns out to be equivalent
to the following asymptotic expression (see Appendix I-A for
the proof of this equivalence):

R∗(n, ε, P )

log e
= P −

√
2P

n
Q−1(ε)− 1

2
P 2

+ o

(√
P

n

)
+ o
(
P 2
)

(54)

as n→∞, P → 0, and nP 2 →∞. In view of (52) and (53),
it is natural to use the ββ bounds (9) and (12), since they
are nonasymptotic versions of the golden formula. Indeed, we
obtain from (9) and (12) that

R∗(n, ε, P ) ≈ max
PXn

1

n

(
− log β1−ε(PXnY n , PXnQY n)

+ log βα(PY n , QY n)
)
. (55)

Next, we choose QY n = (PY |X=0)n. The analysis in [34,
pp. 4882–4883] implies that

max
PXn

(
− 1

n
log β1−ε(PXnY n , PXnQY n)

)
≈ P log e−

√
2P

n
Q−1(ε) log e (56)

which yields the first two terms in (54).
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Furthermore, one can show through a large-deviation anal-
ysis that,

max
PXn

1

n
log βα(PY n , QY n) ≈ −D(P ∗Y ‖QY ) ≈ − log e

2
P 2.

(57)
Here, the maximization in (57) is taken with respect to all input
distributions PXn for which − 1

n log β1−ε(PXnY n , PXnQY n)
is close to the RHS of (56). Substituting (56) and (57)
into (55), we recover the dominant terms in (54).

One may attempt to establish (54) by using the normal
approximation [5]

R∗(n, ε, P ) = C(P )−
√
V (P )

n
Q−1(ε) + o

(
1√
n

)
(58)

and then by Taylor-expanding C(P ) and V (P ) for P → 0.
However, there are two major drawbacks to this approach.
First, establishing the normal approximation (58) is chal-
lenging for fading channels (see [36] and the remarks after
Theorem 3). So this approach would work only in the AWGN
case. Second, one needs to verify that the o(1/

√
n) term

in (58) is uniform in P , which is nontrivial.

C. Rayleigh-Fading Channels With Perfect CSIR

We next consider the Rayleigh-fading channel

Yi = HiXi + Zi, i = 1, . . . , n (59)

where both {Hi} and {Zi} are independent and identically
distributed (i.i.d.) CN (0, 1) random variables. We assume that
the channel coefficients {Hi} are known to the receiver but
not to the transmitter. Furthermore, we assume that every
codeword xn satisfies the power constraint (43). The wideband
slope of this channel is [13, Eq. (208)]

S0 =
2E
[
|H|2

]2
E[|H|4]

= 1 (60)

where H ∼ CN (0, 1).
Theorem 3 below characterizes the minimum energy per bit

E∗b(k, ε, R) for the Rayleigh-fading channel in the asymptotic
limit k →∞ and R→ 0.

Theorem 3: Consider the Rayleigh block-fading chan-
nel (59). The following expansion for E∗b(k, ε, R) holds in
the asymptotic limit k →∞, R→ 0, and kR→∞:

E∗b(k, ε, R)

N0
= loge 2 +

√
2 loge 2

k
Q−1(ε) + (log2

e 2)R

+ o

(
1√
k

)
+ o(R) (61)

or, equivalently,

10 log10

E∗b(k, ε, R)

N0

= 10 log10

Eb

N0 min

+
R

S0
10 log10 2︸ ︷︷ ︸

wideband slope approximation

+
10 log10 e√

loge 2

√
2

k
Q−1(ε) + o

(
1√
k

)
+ o(R) (62)

where 10 log10
Eb

N0 min
= −1.59 dB, and S0 = 1. If k → ∞,

R→ 0, but kR→ c <∞, then we have

E∗b(k, ε, R)

N0
= loge 2 +

√
2 loge 2

k
Q−1(ε) + o

(
1√
k

)
(63)

or, equivalently,

10 log10

E∗b(k, ε, R)

N0

= 10 log10

Eb

N0 min

+
10 log10 e√

loge 2

√
2

k
Q−1(ε) + o

(
1√
k

)
. (64)

Proof: See Appendix II.
A few remarks are in order:
• As in the AWGN case, the minimum energy per bit
E∗b(k, ε, R) over the Rayleigh-fading channel (59) with
perfect CSIR satisfies

10 log10

E∗b(k, ε, R)

E∗b(R)
=

10 log10 e√
loge 2

√
2

k
Q−1(ε)

+ o(R) + o

(
1√
k

)
. (65)

Again we observe that, in the low spectral effi-
ciency regime, the gap in dB between E∗b(k, ε, R) and
the asymptotic limit E∗b(R) is—up to first order—
proportional to 1/

√
k and is independent of R. Further-

more, the gap in the fading case coincides with that in
the AWGN case up to o(R) + o(1/

√
k) terms.

• Unlike the asymptotic wideband approximation (37),
which holds for all fading distributions (see [13]), our
result in Theorem 3 relies on the Gaussianity of the
fading coefficients, and does not necessarily hold for
other fading distributions. In fact, as observed in [35,
Sec. III.D], there are fading distributions for which the
minimum energy per bit E∗b(k, ε, R) does not converge
to −1.59 dB when k →∞, R→ 0, and ε is fixed.

• For the case of nonvanishing rate (or, equivalently, nonva-
nishing SNR P ), a normal approximation for the maxi-
mum rate R∗(n, P, ε) achievable over the channel (59)
when CSIR is available is reported in [36]. This ap-
proximation relies on the additional constraint that every
codeword xn satisfies ‖xn‖∞ = o(n1/4). In contrast,
Theorem 3 does not require this additional constraint.

• One of the challenges that one has to address when estab-
lishing a nonasymptotic converse bound on E∗b(k, ε, R) is
that the variance of the information density i(xn;Y nHn)
depends on ‖xn‖4 (see [25, Eqs. (47)–(52)]). In order
to obtain a tight converse bound on E∗b(k, ε, R) for
fixed R, one needs to expurgate the codewords whose
`4 norm ‖xn‖4 is far from that of the codewords of
a Gaussian code (see [25] and [36]). However, in the
limit R → 0 of interest in this paper, this expurgation
procedure is not needed since the dominant term in the
asymptotic expansion of the variance of i(xn;Y nHn)
does not depend on ‖xn‖4. Furthermore, the wideband
slope is also insensitive to ‖xn‖4. Indeed, to achieve the
wideband slope of a fading channel with perfect CSIR,
QPSK inputs are as good as Gaussian inputs [13].
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Fig. 2. Minimum energy per bit versus spectral efficiency of the AWGN channel; here, k = 2000 bits, and ε = 10−3.

D. Numerical results

In Fig. 2, we present a comparison between the approx-
imation (45) (with the two o(·) terms omitted), the ββ
achievability bound (12), and the ββ converse bound (9). In
both the achievability and the converse bound, QY n is chosen
to be the product distribution obtained from the capacity-
achieving output distribution of the channel (42) (i.e., QY n =
CN (0, (1 + P )In)). For the parameters considered in Fig. 2,
i.e., k = 2000 bits and ε = 10−3, the approximation (45)
is accurate. Fig. 3 provides a similar comparison for the
Rayleigh fading channel (59). In this case, the ββ converse
bound is difficult to compute (due to the need to perform an
optimization over all input distributions), and is not plotted.

V. OTHER APPLICATIONS OF THEOREM 1

A. The Additive Exponential-Noise Channel

Consider the additive exponential-noise channel

Yi = Xi + Zi, i = 1, . . . , n (66)

where {Zi} are i.i.d. Exp(1)-distributed. As in [24], we
require each codeword xn ∈ Rn to satisfy

xi ≥ 0, i = 1, . . . , n, and
n∑
i=1

xi ≤ nσ. (67)

The additive exponential-noise channel (66) can be used to
model a communication system where information is conveyed
through the arrival times of packets, and where each packet
goes through a single-server queue with exponential service
time [37]. It also models a rapidly-varying phase-noise channel
combined with an energy detector at the receiver [38].

The capacity of the channel (66) under the input constraints
specified in (67) is given by [24, Th. 3]

C(σ) = log(1 + σ) (68)

and is achieved by the input distribution P ∗X according to
which X takes the value zero with probability 1/(1 + σ)
and follows an Exp(1 + σ) distribution conditioned on it
being positive. Furthermore, the capacity-achieving output
distribution is Exp(1 + σ). A discrete counterpart of the
exponential-noise channel is studied in [39], where a lower
bound on the maximum coding rate is derived.

Theorem 4 below characterizes the dispersion of the chan-
nel (66).

Theorem 4: Consider the additive exponential-noise chan-
nel (66) subject to the constraint (67). For every 0 < ε < 1,
the maximum coding rate R∗(n, ε) admits the following ex-
pansion:

R∗(n, ε) = log(1 + σ)−
√
V (σ)

n
Q−1(ε) +O

(
log n

n

)
(69)

where
V (σ) =

σ2

(1 + σ)2
log2 e. (70)

Proof: We first prove that (69) is achievable using the ββ
achievability bound in Theorem 1. Let QXn = (P ∗X)n, where
P ∗X is the capacity-achieving input distribution. Let PXn be the
conditional distribution of Xn ∼ QXn given that Xn belongs
to the set F specified below:

F =
{
xn ∈ Rn : xi ≥ 0, nσ − log n ≤

n∑
i=1

xi ≤ nσ
}
. (71)

By construction, Xn ∼ PXn satisfies the constraint (67).
Finally, let PY n , PXn ◦ PY n |Xn and let QY n , QXn ◦
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Fig. 3. Minimum energy per bit versus spectral efficiency of the Rayleigh-fading channel (59) with perfect CSIR; here, k = 2000 bits, ε = 10−3.

PY n |Xn . We apply the ββ bound in Theorem 1 with τ =
1/
√
n and with PXn and QY n chosen as above. The term

βτ (PY n , QY n) can be evaluated as follows:

log βτ (PY n , QY n)

≥ logQXn [F ] + log τ (72)

= log

Q
 − log n√

nVarP∗X [X]

−Q(0)−O
(

1√
n

)+ log τ

(73)
= O(log n). (74)

Here, (72) follows from (31), and (73) follows from the Berry-
Esséen theorem (see, e.g., [40, Sec. XVI.5]).

We next evaluate β1−ε+τ (PXnY n , PXnQY n). It follows
from [5, Eq. (103)] that

β1−ε+τ (PXnY n , PXnQY n) ≤ exp(−γn) (75)

where γn satisfies

PXnY n

[
log

dPXnY n

d(PXnQY n)
(Xn, Y n) ≥ γn

]
≥ 1− ε+ τ. (76)

Note that, under PXnY n , the random variable
log dPXnY n

d(PXnQY n ) (Xn, Y n) has the same distribution as

n log(1 + σ) +
log e

1 + σ

n∑
i=1

Xi −
σ log e

1 + σ

n∑
i=1

Zi (77)

where Zi are i.i.d. Exp(1)-distributed. This random variable
depends on the codeword Xn only through

∑n
i=1Xi. Fur-

thermore, given
∑n
i=1Xi, this random variable is the sum

of n i.i.d. random variables. Using the Berry-Esséen theorem

and (71) to evaluate the left-hand side (LHS) of (76), we
conclude that

PXnY n

[
log

dPXnY n

dPXnQY n
(Xn, Y n) ≥ γn

]
≥ P

[
σ log e

1 + σ

n∑
i=1

(1− Zi) ≥ γn − n log(1 + σ)− log e

1+σ
log n

]
(78)

≥ Q

(
γn + (log e)(log n)/(1 + σ)− n log(1 + σ)√

nV (σ)

)

−O
(

1√
n

)
. (79)

Equating the RHS of (79) to 1− ε+ τ , and solving it for γn,
we conclude that

γn = n log(1 + σ)−
√
nV (σ)Q−1(ε) +O(log n). (80)

Substituting (80) into (75), and then (75) and (74) into (12),
we establish that (69) is achievable.

To prove the converse part of Theorem 4, we first notice that
by [5, Lemma 39], we can assume without loss of generality
that all codewords xn belong to the simplex

Fn ,
{
xn ∈ Rn :

n∑
i=1

xi = nσ, xi ≥ 0
}
. (81)

Let QY n = QXn ◦PY n|Xn , where, as before, QXn = (P ∗X)n.
By the meta-converse theorem [5, Th. 27], every (n,M, ε)
code for the channel (66) satisfies

M ≤ sup
PXn

1

β1−ε(PXnY n , PXnQY n)
(82)

where the supremum is over all probability distribu-
tions supported on Fn. We next note that the function
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β1−ε(PY n|Xn=xn , QY n) takes the same value for all xn ∈ Fn.
Indeed, by using the Neyman-Pearson lemma we observe that,
for every xn ∈ Fn,

β1−ε(PY n|Xn=xn , QY n) = e−nσ/(1+σ)P

[
n∑
i=1

Zi ≤
n− ξn
1 + σ

]
(83)

where ξn satisfies

P

[
n∑
i=1

Zi ≤ n− ξn

]
= 1− ε. (84)

Using [5, Lemma 29], we conclude that for every xn ∈ Fn,

sup
PXn

β1−ε(PXnY n , PXnQY n) = β1−ε(PY n|Xn=xn , QY n).

(85)
For convenience, we shall set xn = x̄n , [σ, . . . , σ]. This
choice makes PY n|Xn=xn a distribution of i.i.d. random vari-
ables. Using [5, Lemma 58] and performing straightforward
algebraic manipulations, we obtain

− log β1−ε(PY n|Xn=x̄n , QY n)

= n log(1 + σ)−
√
nV (σ)Q−1(ε) +O(log n). (86)

We conclude the proof by substituting (85) and (86) into (82).

B. MIMO Block-Fading Channel With Perfect CSIR

In this section, we use the ββ achievability bound (12)
to characterize the maximum coding rate achievable over
an mt × mr Rayleigh MIMO block-fading channel. The
channel is assumed to stay constant over nc channel uses
(a coherence interval) and to change independently across
coherence intervals. The input-output relation within the kth
coherence interval is given by

Yk = XkHk + Zk. (87)

Here, Xk ∈ Cnc×mt and Yk ∈ Cnc×mr are the transmitted
and received matrices, respectively; the entries of the fading
matrix Hk ∈ Cmt×mr and of the noise matrix Zk ∈ Cnc×mr

are i.i.d. CN (0, 1). We assume that {Hk} and {Zk} are
independent, that they take on independent realizations over
successive coherence intervals, and that they do not depend on
the matrices {Xk}. The channel matrices {Hk} are assumed
to be known to the receiver but not to the transmitter. We
shall also assume that each codeword spans ` ∈ N coherence
intervals, i.e., that the blocklength of the code is n = `nc.
Finally, each codeword X` is constrained to satisfy∥∥X`∥∥2

F
≤ nP. (88)

1) Capacity and dispersion: In the asymptotic limit `→∞
for fixed nc, the capacity of (87) is given by [41]

C(P ) = EH

[
log det

(
Imt +

√
P/mtHHH

)]
. (89)

If either mt = mr = 1 or mr ≥ 2, the capacity is achieved
by a unique input distribution, under which the matrix X
has i.i.d. CN (0, P/mt) entries [41]. In this case, we denote
the capacity-achieving input distribution by P ∗X . If mt > 1

and mr = 1 (i.e., a multiple-input single-output channel),
the capacity-achieving input distribution is not unique [42].
The capacity-achieving output distribution is always unique
and is denoted by P ∗YH.6 More specifically, P ∗YH = PHP

∗
Y|H,

where under P ∗Y|H=H, the column vectors of Y are i.i.d.
CN (0,HH

i Hi + P/
√
mtImr

) distributed.
The channel dispersion for the single-antenna case with

perfect CSIR was derived in [25]. This result was extended
to multiple-antenna block-fading channels in [36] and [42]. In
particular, it was shown in [36] that7 for every 0 < ε < 1/2

R∗(n, ε) ≥ C(P )−
√
V (P )

n
Q−1(ε) + o(1/

√
n). (90)

Here,

V (P ) = inf E
[
Var

[
log

dPYH |X

dP ∗YH
(X,Y,H)

∣∣∣X] ] (91)

where the infimum is over the set of capacity-achieving input
distributions. For the case mt = mr = 1 or mr ≥ 2, the
infimum is over the singleton {P ∗X}.

2) Evaluation of the ββ achievability bound (12): We now
turn our attention to the computation of the ββ achievability
bound (12) for the channel (87). For simplicity, we shall focus
on the case in which the capacity-achieving input distribution
is unique. To compute (12), we choose PX` as the uniform
distribution on Sn , {X` :

∥∥X`∥∥2

F
= nP}, and set QY`H` =

(P ∗YH)`. With these choices, we have

R∗(n, ε) ≥ 1

n
sup

0<τ<ε
log

βτ (PY`H` , QY`H`)

β1−ε+τ (PX`Y`H` , PX`QY`H`)
. (92)

The denominator β1−ε+τ (PX`Y`H` , PX`QY`H`) in (92)
can be computed using the Neyman-Pearson lemma
and standard Monte Carlo techniques. However,
computing βτ (PY`H` , QY`H`) in the numerator is more
involved, since there is no simple expression for PY`H` . To
circumvent this, we further lower-bound βτ (PY`H` , QY`H`)
using the data-processing inequality for βα(·, ·) as follows.
Let X̃` be a sequence of i.i.d. random matrices with X̃k ∼ P ∗X ,
k = 1, . . . , `. Then, PX` can be obtained via X̃` through
X` =

√
nP X̃`/

∥∥X̃`∥∥
F
. Let P (s)

Y`H` |X` , PH`P
(s)

Y` |X`H` , where

P
(s)

Y` |X`H` denotes the channel law defined by

Yk = XkHk
√
nP

‖X`‖F
+ Zk, k = 1, . . . , `. (93)

We have that PY`H` = PX` ◦ PY`H` |X` = (P ∗X)` ◦ P (s)

Y`H` |X` .
Furthermore, QY`H` = (P ∗X)` ◦ PY`H` |X` . Now, by the data-
processing inequality,

βτ (PY`H` , QY`H`) ≥ βτ
(
(P ∗X)`P

(s)

Y`H` |X` , (P
∗
X)`PY`H` |X`

)
.

(94)

Since the Radon-Nikodym derivative
dP

(s)

Y`H` | X`

dPY`H` | X`
can be com-

puted in closed form, the RHS of (94) can be computed using
the Neyman-Pearson lemma and Monte Carlo techniques.

6Since the channel matrix H is known at the receiver, the channel output
consists of the pair (Y,H).

7It is also shown in [36] that the bound (90) is tight under the additional
constraint ‖X`‖∞ = o(n1/4) on each codeword X`.
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Fig. 4. Bounds on the maximum rate for a 4× 4 MIMO Rayleigh block-fading channel; here SNR=0 dB, ε = 0.001, and nc = 4.

The resulting bound8 is shown in Fig. 4 for a 4×4 Rayleigh
block-fading channel with nc = 4, ε = 0.001, and SNR
= 0 dB. For comparison, we have also plotted the normal
approximation (90) (with the o(1/

√
n) term omitted), the cost-

constrained DT bound (30), and the variation of Feinstein’s
bound provided in (36). More specifically, (30) is computed
with

F = {X` : ‖X`‖2F ≤ nP} (95)

and with X` ∼ QX` having i.i.d. CN (0, P ′/mt) entries. Here,
P ′ is chosen such that QX` [Fc] = ε/2. To compute (36), we
chose the same PX` and QY`H` that we used to compute (92).
Not surprisingly, the ββ achievability bound (12) is uniformly
tighter than both (30) and (36). Note also that (36) is better
than the cost-constrained DT bound (30) mainly because it
uses a better input distribution.

We also note that the κβ bound [5, Th. 25] (with F = Sn)
is much more difficult to compute because one needs to
maximize over all codewords X` ∈ Sn. Furthermore, for
blocklength values of practical interest, we expect that

max
X`∈Sn

β1−ε+τ (PY`H` |X`=X` , QY`H`)

� β1−ε+τ (PX`Y`H` , PX`QY`H`) (96)

which means that the resulting κβ bound may be much
looser than (92). To validate this claim, we evalu-
ate β1−ε+τ (PY`H` |X`=X` , QY`H`) for a specific codeword
X̂` ∈ Sn constructed as follows: the entries x̂

(i)
j,k of

the matrix X̂i are x̂
(1)
1,1 =

√
nP , and x̂

(i)
j,k = 0,

∀(i, j, k) 6= (1, 1, 1). By construction, β1−ε+τ (PY`H` |X`=X̂`)
is a lower bound on the LHS of (96). It can be shown

8The numerical routines used to obtain these results are available at
https://github.com/yp-mit/spectre

that the ratio between β1−ε+τ (PY`H` |X`=X̂` , QY`H`) and
β1−ε+τ (PX`Y`H` , PX`QY`H`) grows exponentially in `. Nu-
merically, we observe that for the parameters in Fig. 4 and
the choices τ = ε/2 = 5× 10−4 and n = ncl = 400,

− log2 β1−ε+τ (PY`H` |X`=X̂` , QY`H`)

≈ − log2 β1−ε+τ (PX`Y`H` , PX`QY`H`) + 735 bits. (97)

VI. CONCLUDING REMARKS

We have developed a novel channel coding achievability
bound (which we refer to as the ββ achievability bound)
that involves two binary hypothesis tests, one for the joint
distribution of the input and the output, and the other for the
output distribution. Our bound together with a ββ converse
bound established earlier by Polyanskiy and Verdú [18, Th. 15]
yields a nonasymptotic version of the golden formula (3). Con-
nections between the ββ bounds and various other nonasymp-
totic bounds as well as their asymptotic counterparts are
summarized in Fig. 1.

The analogy between the ββ bounds and the golden formula
allows us to extend to the nonasymptotic regime asymptotic
analyses in which the golden formula plays a key role. To
demonstrate this point, we have used the ββ bounds to
obtain a finite-blocklength extension of Verdú’s wideband-
slope approximation [13]. Our proof parallels the derivation
of the latter, except that the beta-beta bounds are used in
place of the golden formula. We have also used the ββ
achievability bound to characterize the channel dispersion of
the additive exponential-noise channel and to obtain a finite-
blocklength achievability bound for MIMO Rayleigh-fading
channels with perfect CSIR. In both cases, the ββ achievability
bound proves to be very useful: in the former case, it simplifies
the asymptotic analysis; in the latter case, it yields the tightest
achievability bound known to date.
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A crucial step in evaluating both the ββ achievability and
converse bounds is to choose an appropriate output distribution
QY . A good choice of QY yields a bound that is both
analytically tractable and numerically tight. Some general
principles for choosing QY are discussed in [43, Ch. I.3.4]
and [44].

APPENDIX I
PROOF OF THEOREM 2

The proof is divided into four parts. (i) We first show in
Appendix I-A that, when k →∞, R→ 0, and kR→∞, the
expansion (54) implies (44). We then prove (54) by providing
(ii) achievability and (iii) converse results in Appendices I-B
and I-C, respectively. (iv) Finally, we prove (46) in Ap-
pendix I-D.

A. The asymptotic expansion (54) implies (44)

Observe that the blocklength n, the transmit power P ,
the data rate R, the energy per bit Eb, and the number of
information bits k are related as follows:

k = nR and P = EbR (98)

where R is measured in bits per channel use. Hence,
E∗b(k, ε, R) can be obtained from R∗(n, ε, P ) by solving the
equation

R = R∗(k/R, ε, E∗b(k, ε, R)R). (99)

Substituting (54) into (99) after setting the base of the log
in (54) to 2, we obtain

R loge 2 = E∗b ·R−
√

2E∗b ·R2

k
Q−1(ε)− 1

2
(E∗b ·R)2

+ o

(√
E∗bR

2

k

)
+ o
(
(E∗b ·R)2

)
(100)

in the asymptotic limit n→∞, P → 0, and nP 2 →∞. Here,
we set E∗b = E∗b(k, ε, R) for notational convenience. Dividing
both sides of (100) by R, and rearranging, we obtain (recall
that N0 = 1)

E∗b = loge 2−
√

2E∗b
k
Q−1(ε)− (E∗b)2R

2

+ o

(√
E∗b
k

)
+ o
(
(E∗b)2R

)
. (101)

This implies that

E∗b = loge 2 + o(1). (102)

Substituting (102) into the RHS of (101), we recover (44).
In the next two sections we shall establish that (54) holds

in the asymptotic limit n→∞, P → 0, and nP 2 →∞. Note
that by (98) and (102), these limits are equivalent to the limits
k → ∞, R → 0, and kR → ∞ stated in Theorem 2. Unless
otherwise specified, all asymptotic expansions in the next two
sections hold in the limit n→∞, P → 0, and nP 2 →∞.

B. Proof of (54): Achievability

We shall apply the ββ achievability bound (12) with PXn
chosen as the uniform distribution over the power sphere

Fn , {xn ∈ Cn : ‖xn‖2 = nP} (103)

and with QY n = CN (0, In). Furthermore, we shall set

τ = (nP 2)−1/2. (104)

Since we are interested in the asymptotic regime n→∞, we
can assume without loss of generality that τ < ε. By (12),

R∗(n, ε, P ) ≥ 1

n
log

βτ (PY n , QY n)

β1−ε+τ (PXnY n , PXnQY n)
. (105)

The denominator on the RHS of (105) can be computed
as follows. Due to the spherical symmetry of Fn and QY n ,
we have that βα(PY n|Xn=xn , QY n) takes the same value for
all xn ∈ Fn. Let x̄n , [

√
nP , 0, . . . , 0]. We next apply [5,

Lemma 29] to conclude that for every PXn supported on Fn,

β1−ε+τ (PXnY n , PXnQY n)

= β1−ε+τ (PY n |Xn=x̄n , QY n) (106)

= β1−ε+τ (CN (
√
nP , 1), CN (0, 1)). (107)

It follows from the Neyman-Pearson lemma [21] that

β1−ε+τ (PXnY n , PXnQY n) = Q
(√

2nP +Q−1(1− ε+ τ)
)
.

(108)
To evaluate the RHS of (108) we use that [45, Eq. (3.53)]

logQ(x) = −x
2 log e

2
− log x− 1

2
log(2π) + o(1), x→∞

(109)
and obtain

log β1−ε+τ (PXnY n , PXnQY n)

= −nP log e+
√

2nPQ−1(ε) log e+ o
(√

nP
)
. (110)

For latter use, we notice that the expansion (110) holds not
only for the uniform distribution over the power sphere Fn;
rather it holds for every probability distribution PXn supported
on Fn.

To evaluate βτ (PY n , QY n), we shall make use of the
following lemma, which provides a variational characterization
of the β function.

Lemma 5: For every pair of probability measures P and Q
on X and every α ∈ (0, 1), we have that

βα(P,Q) = max
R

ββα(P,R)(R,Q) (111)

where the maximum is over all probability measures R on
X . Furthermore, the maximum is achieved by all probability
measures contained in the one-parameter exponential family
{Rλ : λ ∈ (0, 1)} connecting P and Q. Specifically, Rλ is
defined as

dRλ
dµ

(x) , e−λD1−λ(P‖Q)

(
dP

dµ
(x)

)1−λ(
dQ

dµ
(x)

)λ
. (112)

Here, D1−λ(P‖Q) denotes the Rényi divergence of order 1−
λ [46], and µ is a measure on X that satisfies P � µ and
Q� µ.
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Proof: See Appendix I-E.
Let (P ∗Y )n = CN (0, (1 +P )In) be the product distribution

obtained from the capacity-achieving output distribution of an
AWGN channel with SNR P . It follows from Lemma 5 that

βτ (PY n , QY n) ≥ ββτ (PY n ,(P
∗
Y )n)((P

∗
Y )n, QY n). (113)

By (35) and [30, Prop. 2],

βτ (PY n , (P
∗
Y )n) ≥ c1τ

√
1 + 2P

1 + P
, τ̂ (114)

where c1 is a positive constant independent of P . Since τ 7→
βτ is nondecreasing, it follows from (113) and (114) that

βτ (PY n , QY n) ≥ βτ̂ ((P ∗Y )n, QY n). (115)

To evaluate the RHS of (115), we use the Neyman-Pearson
lemma and that both (P ∗Y )n and QY n are product dis-
tributions. Specifically, under (P ∗Y )n, the random variable
log

d(P∗Y )n

dQY n
(Y n) has the same distribution as

n∑
i=1

(
|Zi|2P log e− log(1 + P )

)
(116)

where the {Zi} are i.i.d. CN (0, 1) random variables. Further-
more,

E
[
|Zi|2P log e− log(1 + P )

]
=

1

2
P 2 log e+O(P 3) (117)

Var
[
|Zi|2P log e− log(1 + P )

]
= P 2 log2 e. (118)

Using [5, Lemma 59], and (116)–(118), we conclude that

log βτ̂ ((P ∗Y )n, QY n)

≥ −1

2
nP 2 log e−

√
2nP 2 log2 e

τ̂
+ log

τ̂

2
+O(nP 3) (119)

= −1

2
nP 2 log e+ o(nP 2). (120)

Here, the second and third terms on the RHS of (119) behave
as o(nP 2) due to (104), (115), and the assumption that nP 2 →
∞. Substituting (120) into (115), and then (110) and (115)
into (105), we conclude that (54) is achievable.

C. Proof of (54): Converse

As in [5, Section III.J], we can assume without loss of gener-
ality that each codeword xn satisfies the power constraint (43)
with equality, i.e., xn ∈ Fn. To prove the converse, we shall
use the ββ converse bound (9) with QY n = CN (0, In) and
with

δ = 24
√

2n−1/2 + e−
√
nP 2

. (121)

This yields

R∗(n, ε, P ) ≤ sup
PXn

1

n
log

β1−δ(PY n , QY n)

β1−ε−δ(PXnY n , PXnQY n)
(122)

where the supremum is over all probability distributions PXn
supported on Fn, and PY n = PXn ◦ PY n|Xn .

For this choice of parameters, the denominator on the RHS
of (122) admits the same asymptotic expansion as (110). Next,

we evaluate the numerator β1−δ(PY n , QY n). Consider the
following test between PY n and QY n :

T (yn) = 1
{

2‖yn‖2 ≥ γ
}

(123)

where γ is chosen so that

PY n
[
2‖Y n‖2 ≥ γ

]
= 1− δ. (124)

By the Neyman-Pearson lemma,

β1−δ(PY n , QY n) ≤ QY n
[
2‖Y n‖2 ≥ γ

]
. (125)

Note that under PY n the random variable 2‖Y n‖2 has the
same distribution as

∑2n
i=1(Zi +

√
P )2 with {Zi} i.i.d. and

N (0, 1)-distributed, and regardless of the choice of PXn

(provided that PXn is supported on Fn). Next, we estimate
PY n [2‖Y n‖2 ≥ γ] using the Berry-Esséen theorem (see, e.g.,
[40, Ch. XVI.5]) as follows:∣∣∣∣∣PY n[2‖Y n‖2 ≥ γ]−Q

(
γ − 2n(1 + P )√

4n(1 + 2P )

)∣∣∣∣∣
≤

6E
[
|(Z1 +

√
P )2 − 1− P |3

]
(2 + 4P )3/2

√
2n

(126)

≤ 24
√

2n−1/2. (127)

Here, the last step follows because

E
[
|(Z1 +

√
P )2 − 1− P |3

]
≤
(
E
[
|(Z1 +

√
P )2 − 1− P |4

])3/4

(128)

= (12(1 + 2P )2 + 48(1 + 4P ))3/4 (129)
≤ 643/4(1 + 2P )3/2. (130)

Using (124) and (127), we obtain

γ ≥ 2n(1 + P )−
√

4n(1 + 2P )Q−1(δ − 24
√

2n−1/2) , γ̃.
(131)

Using (121) and the expansion

Q−1(t) =
√

2 loge(1/t)(1 + o(1)), t→ 0 (132)

which follows from (109), we conclude that the threshold γ̃
behaves as

γ̃ = 2n(1 + P ) +
√

8n(1 + 2P )(nP 2)1/4(1 + o(1)) (133)
= 2n(1 + P ) + o(nP ) (134)

in the limit n → ∞. Under QY n , the random variable
2‖Y n‖ has the same distribution as

∑2n
i=1 Z

2
i with {Zi} i.i.d.

and N (0, 1)-distributed. Next, we use the moderate-deviation
bound [47, Th. 3.7.1] to evaluate QY n [2‖Y n‖2 ≥ γ] as
follows:

lim sup
n→∞

2n

(γ̃ − 2n)2
logQY n [2‖Y n‖2 ≥ γ]

≤ lim sup
n→∞

2n

(γ̃ − 2n)2
logP

[
2n∑
i=1

Z2
i ≥ γ̃

]
(135)

= lim sup
n→∞

2n

(γ̃ − 2n)2
logP

[
1

γ̃ − 2n

( 2n∑
i=1

Z2
i − 2n

)
≥ 1

]
(136)

≤ −1

4
log e. (137)
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Here, (135) follows from (131), and (137) follows by us-
ing [47, Th. 3.7.1] with an = 2n(γ̃n−2n)−2 and Γ = [1,∞].
Combining (125), (134), and (137), we obtain that

log β1−δ(PY n , QY n) ≤ − log e

4

(γ̃ − 2n)2

2n
(1 + o(1)) (138)

= −1

2
nP 2 log e+ o(nP 2). (139)

We conclude the converse proof of (54) by substituting (110)
and (137) into (122).

D. Proof of (46)
Note that the converse part of (46) follows directly from (39)

since, by definition,

E∗b(k, ε, R) ≥ E∗b(k, ε). (140)

Thus, it remains to show that (46) is achievable under the
conditions k →∞, R→ 0, and kR→ c <∞, which implies
that (46) is achievable with codes of blocklength k2/c. Without
loss of generality, we can assume that c > 0. Indeed, we
can always transform a code that satisfies kR → c̃ > 0 into
a code satisfying kR → 0 by appending k3 zero symbols
to each codeword, without changing the total energy of each
codeword.

Applying the ββ bound (12) with the same PXn and the
same QY n as in Appendix I-B but with τ = (nP )−1/2, we
conclude that there exists a sequence of (n,M, ε) codes that
satisfy

M ≥ βτ (PY n , QY n)

β1−ε+τ (PXnY n , PXnQY n)
. (141)

This time, we shall study the asymptotic behavior of (141) in
the asymptotic limit n → ∞, P → 0, and nP 2 → c/ log2

2 e
(which is equivalent to the limit k →∞, R→ 0, and kR→
c). The denominator satisfies the same expansion as in (110),
whereas the numerator satisfies

log βτ (PY n , QY n) ≥ −1

2
nP 2 log e−

√
2nP 2 log2 e

τ̂

+ log
τ̂

2
+O(nP 3) (142)

= O((nP )1/4). (143)

Here, τ̂ is defined in (114), and (142) follows from (119).
Substituting (110) and (143) into (141), taking the logarithm
(with base 2) on both sides, we conclude that

k ≥ nP log2 e−
√

2nPQ−1(ε) log2 e+ o
(√

nP
)
. (144)

Using the relations (98) and the bound (144) and proceeding
as in (99)–(102), we conclude that (46) is achievable.

E. Proof of Lemma 5
Let T : X → {0, 1} be the (possibly randomized) Neyman-

Pearson test that achieves βα(P,Q). For every probability
measure R on X , it follows that

βα(P,Q) = Q[T = 1] (145)
≥ βR[T=1](R,Q) (146)
≥ ββα(P,R)(R,Q). (147)

Here, (146) follows from the definition of βα(R,Q), and (147)
follows because R[T = 1] ≥ βP [T=1](P,R), because P [T =
1] = α by definition of T , and because α 7→ βα(R,Q) is
monotonically nondecreasing. Maximizing the RHS of (147)
over all probability measures R on X , we obtain

βα(P,Q) ≥ sup
R
ββα(P,R)(R,Q). (148)

It remains to show that for the {Rλ}, λ ∈ (0, 1), defined
in (112), we have

βα(P,Q) = ββα(P,Rλ)(Rλ, Q). (149)

Indeed, we observe that9

log
dP

dRλ
(x) = λD1−λ(P‖Q) + λ log

dP

dQ
(x) (150)

and

log
dRλ
dQ

(x) = −λD1−λ(P‖Q) + (1− λ) log
dP

dQ
(x) (151)

for every x in the support of Q. The identities (150) and (151)
imply that the test T in (145)–(147) coincides with the
Neyman-Pearson test for distinguishing between P and Rλ
and between Rλ and Q. This in turn implies, by the Neyman-
Pearson lemma, that both (146) and (147) hold with equality.
This establishes (149).

APPENDIX II
PROOF OF THEOREM 3

As in Appendix I-A, to prove (61) it is sufficient to show
that the maximum coding rate R∗(n, ε, P ) satisfies

R∗(n, ε, P )

log e
= P −

√
2P

n
Q−1(ε)−P 2 + o

(√
P

n

)
+ o
(
P 2
)

(152)
in the asymptotic limit n → ∞, P → 0, and nP 2 → ∞.
The achievability and the converse part of (152) are proved
in Appendices II-A and II-B, respectively. The proof of (63)
follows similar steps as the ones reported in Appendix I-D,
and is thus omitted. Unless otherwise specified, all asymptotic
expansions in Appendices II-A and II-B hold in the limit n→
∞, P → 0, and nP 2 →∞.

A. Proof of (152): Achievability

We shall apply the ββ achievability bound (12) to the
channel (59) with input Xn and output (Y n, Hn) (recall that
we assumed perfect CSIR) with the same choices of PXn and
QY n as in Section I-B. Namely, PXn is chosen as the uniform
distribution over the power sphere Fn defined in (103), and
QY n = CN (0, In). Furthermore, we set

τ = P + (nP 2)−1/2. (153)

Since τ → 0 as P → 0 and nP 2 → ∞, and since we are
interested in the asymptotic behavior of R∗(n, ε, P ) as n →

9In the case in which P is not absolutely continuous with respect to Q,
we set dP/dQ = +∞ on the singular set.
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∞, P → 0, and nP 2 → ∞, we can assume without loss of
generality that τ < ε. It follows from (12) that

nR∗(n, ε, P ) ≥ log βτ (PY nHn , QY nPHn)

− log β1−ε+τ (PXnY nHn , PXnQY nPHn)

(154)

where PY nHn = PXn ◦ PY nHn|Xn .
To evaluate the second term on the RHS of (154), we use [5,

Eq. (103)] and obtain

− log β1−ε+τ (PXnY nHn , PXnQY nPHn) ≥ γ0 (155)

where γ0 satisfies

PXnY nHn

[
log

dPXnY nHn

d(PXnQY nPHn)
≤ γ0

]
= ε− τ. (156)

Observe now that, under PXnY nHn , the random variable
log dPXnY nHn

d(PXnQY nPHn ) (Xn, Y n, Hn) has the same distribution as

log e

n∑
i=1

(
|HiXi|2 + 2Re(HiXiZ

∗
i )
)
. (157)

Next, we use the central limit theorem for functions [48,
Prop. 1] (see also [30, Prop. 1]) to derive an asymptotic
expansion for γ0 in (156). Specifically, let X̃n ∼ CN (0, P In).
It follows that Xn ∼ PXn has the same distribution as√
nPX̃n/‖X̃n‖. Let

A1,i , |HiX̃i|2 − P (158)

A2,i , |X̃i|2 − P (159)

A3,i , 2Re(HiX̃iZ
∗
i ), i = 1, . . . , n. (160)

The random vectors {[A1,i, A2,i, A3,i]} are i.i.d. with zero
mean and covariance matrix

V =

3P 2 P 2 0
P 2 P 2 0
0 0 2P

 . (161)

Let g : R3 → R be defined as

g(a1, a2, a3) ,
(a1 + P )P

P + a2
+

a3

√
P√

P + a2

(162)

and observe that

(n log e) · g

(
1

n

n∑
i=1

A1,i,
1

n

n∑
i=1

A2,i,
1

n

n∑
i=1

A3,i

)
(163)

has the same distribution as (157). Finally, let j denote the
gradient of g at (0, 0, 0). It follows that

jVjT = 2P 2 + 2P. (164)

We are now ready to invoke [48, Prop. 1] and conclude that
for every γ ∈ R

P
[ n∑
i=1

(
|HiXi|2 + 2Re(HiXiZ

∗
i )
)
≤ γ

]

≤ Q

(
nP − γ√

2n(P + P 2)

)
+O

(
n−1/2

)
. (165)

Setting the RHS of (165) equal to ε − τ and solving for γ,
we obtain an asymptotic lower bound on γ0, which we use to
further lower-bound (155) as follows:

− log β1−ε+τ (PXnPY nHn|Xn , PXnQY nPHn)

≥ nP log e−
√

2nP (1 + P )Q−1
(
ε− τ −O(n−1/2)

)
log e

(166)

= nP log e−
√

2nPQ−1(ε) log e+ o
(√

nP
)
. (167)

Here, (167) follows by Taylor-expanding
√

1 + P for P → 0
and by Taylor-expanding Q−1(·) around ε for τ → 0 and
n→∞.

To evaluate βτ (PY nHn , QY nPHn) on the RHS of (154),
we again use Lemma 5 in Appendix I-B. Let (P ∗Y H)n be
the product distribution obtained from the capacity-achieving
output distribution of the channel (59) with SNR P . Then, by
Lemma 5,

βτ (PY nHn , QY nPHn)

≥ ββτ (PY nHn ,(P
∗
YH)n)((P

∗
Y H)n, QY nPHn). (168)

We lower-bound βτ (PY nHn , (P
∗
Y H)n) by following steps

similar to those reported in Section V-B. Specifically, let
P

(s)
Y nHn|Xn be the transition probability of the following

channel:

Yi =

√
nPHiXi

‖Xn‖
+ Zi, i = 1, . . . , n. (169)

Let (P ∗X)n = CN (0, P In) be the product distribution obtained
from the capacity-achieving input distribution for the chan-
nel (59) under perfect CSIR. Then, we have that PY nHn =

(P ∗X)n ◦ P (s)
Y nHn|Xn and (P ∗Y H)n = (P ∗X)n ◦ PY nHn|Xn . By

the data-processing inequality,

βτ (PY nHn , (P
∗
Y H)n)

≥ βτ ((P ∗X)nP
(s)
Y nHn|Xn , (P

∗
X)nPY nHn|Xn). (170)

To lower-bound the RHS of (170), we shall use the following
bound [49] (see also [5, Eqs. (154)–(156)]):

log βα(P,Q) ≥ −D(P‖Q) + hb(α)

α
(171)

where hb(α) , −α logα − (1 − α) log(1 − α) denotes the
binary entropy function. This yields

βτ ((P ∗X)nP
(s)
Y nHn|Xn , (P

∗
X)nPY nHn|Xn) ≥

exp

(
−
D((P ∗X)nP

(s)
Y nHn|Xn‖(P

∗
X)nPY nHn|Xn) + hb(τ)

τ

)
.

(172)

Note now that

D
(

(P ∗X)nP
(s)
Y nHn|Xn‖(P

∗
X)nPY nHn|Xn

)
= D

(
P

(s)
Y n|HnXn‖PY n|HnXn |PHn(P ∗X)n

)
(173)

= E(P∗X)n

 n∑
i=1

∣∣∣∣∣
√
nPHiXi

‖Xn‖
−HiXi

∣∣∣∣∣
2
 log e (174)
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= E(P∗X)n

[(√
nP − ‖Xn‖

)2]
log e (175)

= 2nP

(
1− Γ(n+ 1/2)√

nΓ(n)

)
log e (176)

≤ 2nP

(
1−

√
1− 1

2n+ 1

)
log e (177)

≤ P 2n

2n+ 1
log e (178)

≤ P log e. (179)

Here, (176) follows because E(P∗X)n [‖Xn‖] =
√
PΓ(n +

1/2)/Γ(n); (177) follows from Wendel’s inequality [50,
Eq. (7)]; and (178) follows because

√
1− x ≥ 1−x for every

x ∈ [0, 1]. Substituting (179) in (172), we obtain

βτ (PY nHn , (P
∗
Y H)n) ≥ exp

(
−P log e+ hb(τ)

τ

)
(180)

≥ e−2τ , τ̂ . (181)

In the first step we used that τ ≥ P and that

hb(τ)

τ
= − log τ +

1− τ
τ

log
1

1− τ
≤ − log τ + log e. (182)

Since α 7→ βα(P,Q) is nondecreasing, we conclude
from (168) and (181) that

βτ (PY nHn , QY nPHn) ≥ βτ̂ ((P ∗Y H)n, QY nPHn). (183)

We next lower-bound the RHS of (183) by using the
Neyman-Pearson lemma and that both (P ∗Y H)n and QY nPHn
are product distributions. Specifically, under (P ∗Y H)n, the
random variable log

d(P∗YH)n

d(QY nPHn ) (Y n, Hn) has the same dis-
tribution as

n∑
i=1

|Zi|2|Hi|2P log e− log(1 + |Hi|2P )︸ ︷︷ ︸
,Bi

(184)

where the random variables {Bi} defined above are i.i.d.. Let

In , E[Bi] , Vn , Var[Bi]. (185)

A straightforward computation reveals that

In =
E
[
|H|4

]
2

P 2 log e+ o(P 2) (186)

and that Vn can be bounded as follows:

3P 2 log2 e ≤ Vn ≤ 11P 2 log2 e. (187)

By [5, Lemma 59],

log βτ̂ ((P ∗Y H)n, QY nPHn)

≥ −nIn −
√

2nVn
τ̂

+
1

2
log

τ̂

2
(188)

= −
E
[
|H|4

]
2

nP 2 log e+ o(nP 2). (189)

Here, in (189) we used (153), (186), and (187). Finally,
substituting (189) into (183), then (167) and (183) into (154),
and using that E

[
|H|4

]
= 2, we conclude that (152) is

achievable.

B. Proof of (152): Converse

It follows from [5, Lemma 39] that we can assume without
loss of generality that each codeword xn of a given (n,M, ε)
code satisfies the power constraint (43) with equality. Further-
more, by arguing as in [5, Eqs. (284)–(286)], we can assume
without loss of generality that the maximum probability of
error of the code is upper-bounded by ε. This allows us to
use the maximum-error-probability version [18, Eq. (222)]
of the ββ converse bound (9). Particularizing this bound to
the channel (59), we conclude that every (n,M, ε) code C
(maximum probability of error) satisfies

βα(PY nHn , QY nHn)

≥ δM

1− α+ δ
inf
xn∈C

βα−ε−δ(PY nHn|Xn=xn , QY nHn) (190)

where ε + δ ≤ α ≤ 1, δ > 0, and PY nHn denotes the output
distribution induced by the code.

To evaluate the bound (190), we shall choose QY nHn =
QY nPHn with QY n = CN (0, In), and set δ = δn and α =
1 − δn with δn chosen such that δn → 0 as n → ∞. With
these choices, we obtain

logM ≤ log β1−δn(PY nHn , QY nPHn)

− inf
xn∈C

log β1−ε−2δn(PY nHn|Xn=xn , QY nPHn)

+ log 2. (191)

The second term on the RHS of (191) is upper-bounded by

− inf
xn∈C

log β1−ε−2δn(PY nHn|Xn=xn , QY nPHn)

≤ − inf
x∞

log β1−ε−2δn(PY∞H∞|X∞=x∞ , PY∞|X∞=0PH∞)

(192)
≤ nP log e−

√
2nPQ−1(ε− 2δn) log e

+O(log(nP )) (193)

= nP log e−
√

2nPQ−1(ε) log e+ o(
√
nP ). (194)

Here, x∞ denotes the infinite-dimensional sequence
(x1, x2, ...), PY∞H∞|X∞ =

∏∞
i=1 PYiHi|Xi ,

PY∞|X∞=0 =
∏n
i=1 PYi|Xi=0, and the infimum in (192)

is taken over all x∞ that satisfy ‖x∞‖2 = nP . The
inequality (192) follows because the feasible region of the
optimization problem on the LHS of (192) is contained in
the feasible region of the optimization problem on the RHS
of (192); (193) follows from [35, App. IV] (in particular,
see [35, Eqs. (243) and (267)]); and in (194) we have used
that δn → 0 as n → ∞. Note that, the RHS of (194) holds
for all (n,M, ε) codes.

To conclude the proof, it is sufficient to show that there
exists a vanishing sequence {δn} such that for every (n,M, ε)
code

log β1−δn(PY nHn , QY nPHn)

≤ −
E
[
|H|4

]
2

nP 2 log e+ o(nP 2). (195)

The idea is to construct a suboptimal test to distinguish
between PY nHn and QY nPHn . Coarsely speaking, our test is
constructed as follows: if PY nHn is induced by a code whose
codewords have suitably small `4 norm, then we use as the
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test the optimal Neyman-Pearson test between the capacity-
achieving output distribution (P ∗Y H)n and QY nPHn . Indeed,
we expect the output distribution induced by such a code to
resemble the capacity-achieving output distribution (P ∗Y H)n.
If instead PY nHn is induced by a code whose codewords are
peaky in an `4 sense, we distinguish between PY nHn and
QY nPHn simply by testing the peakiness of Y n.

We proceed now with the proof. We start by dividing the
codebook C into two subcodebooks C1 and C2 according to
the peakiness of the codewords. More specifically, we set

C1 , {xn ∈ C : ‖xn‖44 ≤ nηn} (196)
C2 , C \ C1 = {xn ∈ C : ‖xn‖44 > nηn} (197)

where the threshold ηn is defined as10

ηn , max
{
nP 5/2, (nP 2)3/4

}
. (198)

Note that ηn → ∞ as n → ∞. Let λ , |C1|/|C|. Further-
more, let P (1)

Y nHn and P
(2)
Y nHn denote the output probability

distributions induced by the subcodes C1 and C2, respectively.
It follows that

PY nHn = λP
(1)
Y nHn + (1− λ)P

(2)
Y nHn . (199)

Lemma 6 below allows us to upper-bound
β1−δn(PY nHn , QY nPHn) by β1−δ1,n(P

(1)
Y nHn , QY nPHn) +

β1−δ2,n(P
(2)
Y nHn , QY nPHn) for some suitably chosen δ1,n

and δ2,n.
Lemma 6: Let P = λP1 + (1 − λ)P2 be a convex combi-

nation of P1 and P2. Then, for every probability measure Q,
and every δ1, δ2 ∈ (0, 1), we have

β1−λδ1−(1−λ)δ2(P,Q) ≤ β1−δ1(P1, Q) + β1−δ2(P2, Q).
(200)

Proof: See Appendix II-C.
Set now

δ1,n = max
{
P 1/4, (nP 2)−1/8

}
(201)

δ2,n = 1− exp
(
−4ξ̃1/2

n P/ηn

)(
1− 2n

ξ̃n

)
(202)

with Z1 ∼ N (0, 1), and

ξ̃n , max
{
n2P 15/4, n9/8P 1/4

}
. (203)

Furthermore, set

δn = λδ1,n + (1− λ)δ2,n. (204)

It can be shown that the sequences {δ1,n}, {δ2,n}, and {δn}
all vanish as n→∞, P → 0, and nP 2 →∞. We shall prove
that

log β1−δ1,n(P
(1)
Y nHn , QY nPHn)

≤ −
E
[
|H|4

]
2

nP 2 log e+ o(nP 2) (205)

10When the entries of Xn are independent Gaussian random variables, we
expect to have ‖Xn‖44 ≈ O(nP 2). This means that for a random Gaussian
code |C1| � |C2|.

and that

log β1−δ2,n(P
(2)
Y nHn , QY nPHn)

≤ −
E
[
|H|4

]
2

nP 2 log e+ o(nP 2). (206)

The desired bound (195) then follows from (199), (205), (206)
and Lemma 6. The proofs of (205) and (206) are provided in
Appendices II-B1 and II-B2, respectively.

1) Proof of (205): To upper-bound
β1−δ1,n(P

(1)
Y nHn , QY nPHn), we consider the following

test between P (1)
Y nHn and QY nPHn :

T (yn, hn) , 1

{
n∑
i=1

|hi|2(|yi|2 − 1)

1 + |hi|2
√
P
≥ ξn

}
(207)

where the threshold ξn satisfies

P
(1)
Y nHn [T = 1] ≥ 1− δ1,n. (208)

As mentioned earlier, this test is related to the Neyman-
Pearson test between the capacity-achieving output distribu-
tion (P ∗Y H)n and QY nPHn . The term (1 + |hi|2

√
P ) in

the denominator of (207) is included because the moment
generating function of the random variable |Hi|2(|Yi|2 − 1)
(with Y n ∼ QY n ) does not exist. It follows from (208) and
from the definition of the β function that

β1−δn(P
(1)
Y nHn , QY nPHn) ≤ QY nPHn [T = 1]. (209)

To evaluate the RHS of (209), we first determine ξn. Let

Ai ,
|Hi(HiXi + Zi)|2 − |Hi|2

1 + |Hi|2
√
P

. (210)

Then

P
(1)
Y nHn [T = 1] = EXn

[
P

[
n∑
i=1

Ai ≥ ξn
∣∣∣Xn

]]
. (211)

Set now

ξn = min
xn∈C1

{ n∑
i=1

E[Ai|Xn = xn]

−
√
δ−1
1,n

∑n

i=1
Var[Ai|Xn = xn]

}
. (212)

We have that for every xn ∈ C1

P

[
n∑
i=1

Ai ≤ ξn
∣∣∣Xn = xn

]

≤ P
[ n∑
i=1

Ai ≤
n∑
i=1

E[Ai|Xn = xn]

−
√
δ−1
1,n

∑n

i=1
Var[Ai|Xn = xn]

∣∣∣∣Xn = xn
]

(213)

≤ δ1,n. (214)

Here, (213) follows from (212), and (214) follows from
Chebyshev’s inequality. Note that (211) and (214) imply that
ξn defined in (212) indeed satisfies (208).
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To characterize the asymptotic behavior of ξn, we make
use of the following estimates of the conditional mean and
the conditional variance of Ai given Xn = xn:

n∑
i=1

E[Ai|Xn = xn] = nPE
[

|H|4

1 + |H|2
√
P

]
(215)

= nPE
[
|H|4

]
+ o(nP ) (216)

and
n∑
i=1

Var[Ai|Xn = xn]

≤ 3

n∑
i=1

(
|xi|4Var

[
|Hi|4

1 + |Hi|2
√
P

]
+Var

[
2|Hi|2Re(HixiZ

∗
i )

1 + |Hi|2
√
P

]
+ Var

[
|Hi|2(Z2

i − 1)

1 + |Hi|2
√
P

])
(217)

≤ 3E
[
|H|8

]
‖xn‖44 +O(n) (218)

≤ 3E
[
|H|8

]
nηn +O(n) (219)

for every xn ∈ C1. Here, (217) follows because

Var

[
K∑
i=1

Bi

]
≤ K

K∑
i=1

Var[Bi] (220)

for all random variables B1, . . . , BK , and in (219) we have
used (196). Substituting (216) and (219) into (212), we obtain

ξn ≥ nPE
[
|H|4

]
−
√

3E[|H|8] (δ−1
1,nnηn) + o

(√
δ−1
1,nnηn

)
.

(221)
To conclude this part of the proof, we next characterize the
asymptotic behavior of δ−1

1,nnηn as follows:

δ−1
1,nnηn = n

max{nP 5/2, (nP )3/4}
max{P 1/4, (nP )−1/8}

(222)

≤ nmax

{
nP 5/2

P 1/4
,

(nP 2)3/4

(nP 2)−1/8

}
(223)

= max{n2P 9/4, n(nP 2)7/8} = o(n2P 2). (224)

Here, (223) follows from the inequality

max{a, b}
max{c, d}

≤ max

{
a

c
,
b

d

}
, ∀a, b, c, d > 0. (225)

Substituting (224) into (221), we obtain

ξn ≥ nPE
[
|H|4

]
+ o(nP ). (226)

Since ξn ≤ nPE
[
|H|4

]
+o(nP ) as can be inferred from (212)

and (216), we conclude that

ξn = nPE
[
|H|4

]
+ o(nP ). (227)

Next, we evaluate QY nPHn [T = 1]. The idea is to use the
Gärtner-Ellis theorem [47, Th. 2.3.6], which characterizes the
probability of large deviations of a random variable from its
mean. Let

Di ,
|Hi|2(|Zi|2 − 1)

1 + |Hi|2
√
P

(228)

where Zi ∼ CN (0, 1), i = 1, . . . , n, are independent of {Hi}.
Note that

QY nPHn [T = 1] = P

[
n∑
i=1

Di ≥ ξn

]
. (229)

Let Λn(·) denote the logarithmic moment-generating func-
tion [47, Eq. (2.2.1)] of the random variable ξ−1

n

∑n
i=1Di.

We shall prove the following result: for every c ∈ R,

lim
n→∞

n

ξ2
n

Λn

(
cξ2
n

n

)
=
c2E

[
|H|4

]
2

, Λ(c). (230)

Let us assume that (230) holds; then we have

lim sup
n→∞

n

ξ2
n

logQY nPHn [T = 1] (231)

= lim sup
n→∞

n

ξ2
n

logP

[
ξ−1
n

n∑
i=1

Di ≥ 1

]
(232)

≤ − inf
t≥1

t2 log e

2E[|H|4]
(233)

= − log e

2E[|H|4]
. (234)

Here, (233) follows from the Gärtner-Ellis theorem,11 and
because the Fenchel-Legendre transformation [47, Def. 2.2.2]
of Λ(c) defined in (230) is

Λ∗(t) = sup
α∈R

{
tα− Λ(α)

}
=

t2

2E[|H|4]
. (235)

Using (234) in (209), we obtain

log β1−δ1,n(P
(1)
Y nHn , QY nPHn) ≤ − log e

2E[|H|4]

ξ2
n

n
(1 + o(1)).

(236)
The desired bound (205) follows by substituting (227)
into (236).

It remains to prove (230). We have

Λn

(
cξ2
n

n

)
= loge E

[
exp

(
log e

cξ2
n

nξn

n∑
i=1

Di

)]
(237)

= n loge EH
[
E
[
exp

(
cξn
n

(|H|2 log e)(|Z|2 − 1)

1 + |H|2
√
P

) ∣∣∣H]] .
(238)

Observe now that the following bound holds for every c > 0,
every h ∈ C, and for all sufficiently large n:

cξn
n

|h|2 log e

1 + |h|2
√
P
≤ cξn log e

n
√
P

< 1. (239)

11Note that we have used the Gärtner-Ellis theorem with 1/n replaced by
the vanishing sequence n/ξ2n (see [47, Remark (a), p. 44]).
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Here, the second inequality follows from (227). Since |Z|2 ∼
Exp(1), we have that for all sufficiently large n,

EH
[
EZ
[
exp

(
cξn
n

|H|2 log e

1 + |H|2
√
P

(|Z|2 − 1)

) ∣∣∣H]]
= E

[(
1− cξn

n

|H|2 log e

1 + |H|2
√
P

)−1

exp

(
−cξn

n

|H|2 log e

1 + |H|2
√
P

)
︸ ︷︷ ︸

≤1

]

(240)

≤
(

1− cξn log e

n
√
P

)−1

<∞. (241)

Using (241), the dominated convergence theorem (see,
e.g., [51, Th. 1.34]), and the Taylor series expansion

ex = 1 + x+
x2

2
+O(x3), x→ 0 (242)

we conclude that

E
[
exp

(
log e

cξn
n

|H|2(|Z|2 − 1)

1 + |H|2
√
P

)]
= 1 +

cξn
n

E
[
|H|2(|Z|2 − 1)

1 + |H|2
√
P

]
︸ ︷︷ ︸

=0

+
c2

2

ξ2
n

n2
E

[(
|H|2(|Z|2 − 1)

1 + |H|2
√
P

)2
]

︸ ︷︷ ︸
=E[|H|4]+O(

√
P )

+O
(
(ξn/n)3

)
(243)

= 1 +
c2

2

ξ2
n

n2

(
E
[
|H|4

]
+O(

√
P )
)

+O
(
(ξn/n)3

)
. (244)

Substituting (244) into (238), and then using that loge(1+x) =
x+ o(x), x→ 0, we conclude that

n

ξ2
n

Λn
(
cξ2
n/n

)
=
n2

ξ2
n

(
c2E

[
|H|4

]
2

ξ2
n

n2
+ o

(
ξ2
n

n2

))

=
c2E

[
|H|4

]
2

+ o(1) (245)

which implies (230).
2) Proof of (206): Consider the test

T (yn, hn) , 1

{
‖yn‖44 ≥ ξ̃n

}
(246)

where ξ̃n is defined in (203). Note that

ξ̃n
n
≥ (nP 2)1/8 →∞, n→∞. (247)

We evaluate the probability that T = 1 under P (2)
Y nHn and

under QY nPHn by following closely the proof of [52, Th. 9].
We start by noting that

P
(2)
Y nHn [T = 1]

= P[‖HnXn + Zn‖4 ≥ ξ̃1/4
n ] (248)

≥ P[‖HnXn‖4 − ‖Zn‖4 ≥ ξ̃1/4
n ] (249)

≥ P[‖HnXn‖4 ≥ 2ξ̃1/4
n ] · P[‖Zn‖4 ≤ ξ̃1/4

n ] (250)
≥ P[|H|‖Xn‖∞ ≥ 2ξ̃1/4

n ] · P[‖Zn‖4 ≤ ξ̃1/4
n ]. (251)

Here, (249) follows by the triangle inequality, and (251)
follows because ‖ · ‖4 ≥ ‖ · ‖∞. The first term in the product
on the RHS of (251) can be bounded as

P[|H|‖Xn‖∞ ≥ 2ξ̃1/4
n ] ≥ P

[
|H|
√
ηn/P ≥ 2ξ̃1/4

n

]
(252)

= exp
(
−4ξ̃1/2

n P/ηn

)
(253)

≥ 1− o(1). (254)

Here, (252) follows because, by Hölder’s inequality and
by (197), ‖xn‖∞ ≥ ‖xn‖24/‖xn‖2 ≥

√
ηn/P for every

xn ∈ C2; (254) follows because

ξ̃
1/2
n P

ηn
=

max{nP 23/8, (nP 2)5/8}
max{nP 5/2, (nP 2)3/4}

(255)

≤ max

{
nP 23/8

nP 5/2
,

(nP 2)5/8

(nP 2)3/4

}
(256)

= max{P 3/8, (nP 2)−1/8} = o(1). (257)

The second term in the product on the RHS of (251) can be
bounded using Markov’s inequality as follows:

P[‖Zn‖4 ≤ ξ̃1/4
n ] = 1− P[‖Zn‖44 ≥ ξ̃n] (258)

≥ 1−
nE
[
|Z1|4

]
ξ̃n

(259)

= 1− o(1). (260)

Here, the last step follows from (247). Substituting (253)
and (259) into (251), we obtain

P
(2)
Y nHn [T = 1] ≥ exp

(
−4ξ̃1/2

n P/ηn

)(
1−

nE
[
|Z1|4

]
ξ̃n

)
(261)

= 1− δ2,n. (262)

Next, we evaluate QY nPHn [T = 1]. Since Y n ∼ CN (0, In)
under QY n , by following the same steps as the ones reported
in [52, Eqs. (117)–(122)] and by using the Gaussian isoperi-
metric inequality [53, Eq. (3.4.8)], we obtain

logQY n [‖Y n‖44 ≥ ξ̃n]

≤ −
(
ξ̃1/4
n − 31/4n1/4

)2

log e− log 2 (263)

= −ξ̃1/2
n log e+ o(ξ̃1/2

n ) (264)

≤ −
E
[
|H|4

]
2

nP 2 log e+ o(nP 2). (265)

Here, in (264) we used (247), and (265) holds for all suffi-
ciently large n, since

ξ̃1/2
n /(nP 2) ≥ P−1/8 →∞, n→∞. (266)

Combining (262) and (265), we conclude (206).

C. Proof of Lemma 6

Let T1 and T2 be the Neyman-Pearson tests that achieve
β1−δ1(P1, Q) and β1−δ2(P2, Q), respectively. Consider the
following test for distinguishing between P and Q:

T , 1{T1 = 1 ∪ T2 = 1} . (267)
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Under P , we have

P [T = 1] = λP1[T = 1] + (1− λ)P2[T = 1] (268)
≥ λP1[T1 = 1] + (1− λ)P2[T2 = 1] (269)
= 1− λδ1 − (1− λ)δ2. (270)

Under Q, we have

Q[T = 1] ≤ Q[T1 = 1] +Q[T2 = 1] (271)
= β1−δ1(P1, Q) + β1−δ2(P2, Q) (272)

where in the first step we used the union bound. Note
that (270) and (272) imply (200).
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