5,298 research outputs found

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    An efficient hybrid model and dynamic performance analysis for multihop wireless networks

    Get PDF
    Multihop wireless networks can be subjected to nonstationary phenomena due to a dynamic network topology and time varying traffic. However, the simulation techniques used to study multihop wireless networks focus on the steady-state performance even though transient or nonstationary periods will often occur. Moreover, the majority of the simulators suffer from poor scalability. In this paper, we develop an efficient performance modeling technique for analyzing the time varying queueing behavior of multihop wireless networks. The one-hop packet transmission (service) time is assumed to be deterministic, which could be achieved by contention-free transmission, or approximated in sparse or lightly loaded multihop wireless networks. Our model is a hybrid of time varying adjacency matrix and fluid flow based differential equations, which represent dynamic topology changes and nonstationary network queues, respectively. Numerical experiments show that the hybrid fluid based model can provide reasonably accurate results much more efficiently than standard simulators. Also an example application of the modeling technique is given showing the nonstationary network performance as a function of node mobility, traffic load and wireless link quality. © 2013 IEEE

    Multiflow Transmission in Delay Constrained Cooperative Wireless Networks

    Full text link
    This paper considers the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of kk-flows, and formally prove that the problem is not only NP-hard but it is o(n1/7−ϵ)o(n^{1/7-\epsilon}) inapproxmiable. To our knowledge*, these results provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and devise a polynomial time algorithm for jointly optimizing routing, scheduling and power control. We then use this algorithm to establish analytical upper and lower bounds for the optimal performance for the general case of kk flows. Furthermore, we propose a polynomial time heuristic for calculating the solution for the general case and evaluate the performance of this heuristic under different channel conditions and against the analytical upper and lower bounds.Comment: 9 pages, 5 figure

    M-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks

    Get PDF
    In this paper, we propose a new routing protocol for heterogeneous Wireless Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficientMulti-hop ProTocol (M-ATTEMPT). A prototype is defined for employing heterogeneous sensors on human body. Direct communication is used for real-time traffic (critical data) or on-demand data while Multi-hop communication is used for normal data delivery. One of the prime challenges in WBASNs is sensing of the heat generated by the implanted sensor nodes. The proposed routing algorithm is thermal-aware which senses the link Hot-spot and routes the data away from these links. Continuous mobility of human body causes disconnection between previous established links. So, mobility support and energy-management is introduced to overcome the problem. Linear Programming (LP) model for maximum information extraction and minimum energy consumption is presented in this study. MATLAB simulations of proposed routing algorithm are performed for lifetime and successful packet delivery in comparison with Multi-hop communication. The results show that the proposed routing algorithm has less energy consumption and more reliable as compared to Multi-hop communication.Comment: arXiv admin note: substantial text overlap with arXiv:1208.609
    • …
    corecore