6 research outputs found

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    A study of sensor movement and selection strategies for strong barrier coverage

    Get PDF
    Intruder detection and border surveillance are some of the many applications of sensor networks. In these applications, sensors are deployed along the perimeter of a protected area such that no intruder can cross the perimeter without being detected. The arrangement of sensors for this purpose is referred to as the barrier coverage problem in sensor networks. A primary question centering such a problem is: How to achieve barrier coverage? On the other hand, sensor nodes are usually battery-powered and have limited energy. It is critical to design energy-efficient barrier construction schemes while satisfying the coverage requirement. First, we studied how to achieve strong barrier coverage with mobile sensors. We leverage the mobility of sensors and relocate them to designated destinations to form a strong horizontal barrier after the random deployment. Algorithms were proposed to calculate the optimal relocating destinations such that the maximum moving distance of sensors is minimized. Depending on the number of sensors on the final barrier, two problems were investigated: (1) constructing a barrier with the minimum number of sensors on the final barrier, and (2) constructing a barrier with any number of sensors on the final barrier. For both problems, we optimized the barrier location instead of fixing it a priori as other works. We proposed algorithms which first identify a set of discrete candidates for the barrier location, then check the candidates iteratively. Both problems could be solved in polynomial time. Second, we investigated how to achieve strong barrier coverage by selectively activating randomly deployed static sensors. We aimed to select the minimum number of sensors to be active to achieve barrier coverage under a practical probabilistic model. The system false alarm probability and detection probability were jointly considered, and a (P_D^{min}, P_F^{max})-barrier coverage was defined where P_D^{min} is the minimum system detection probability and P_F^{max} is the maximum system false alarm probability. Our analysis showed that with the constraint on the system false alarm probability, the number of active sensors affects the detection capability of sensors, which would bring new challenges to the min-num sensor selection problem. We proposed an iterative framework to solve the sensor selection problem under the probabilistic model. Depending on whether the decision fusion was applied, different detection capability evaluation methods were used in the iterative framework. Finally, we studied how to achieve strong barrier coverage in a hybrid network with a mix of mobile and static sensors. A two-step deployment strategy was adopted where static sensors are first randomly deployed, and then mobile sensors are deployed to merge the coverage gap left by the static sensors. We aimed to find the proper coverage gaps to deploy mobile sensors such that (P_D^{min}, P_F^{max})-barrier coverage is achieved, and the total cost of the barrier is minimized. Under the probabilistic model, we solved the problem by iteratively trying multiple assumptions of the number of active sensors, and obtained the min-cost deployment strategy with the help of graph algorithms

    Minimizing the maximum sensor movement for barrier coverage in the plane

    No full text
    Border surveillance for intrusion detection is an important application of wireless sensor networks. Given a set of mobile sensors and their initial positions, how to move these sensors to a region border to achieve barrier coverage energy-efficiently is challenging. In this paper, we study the 2-D MinMax barrier coverage problem of moving n sensors in a two-dimensional plane to form a barrier coverage of a specified line segment in the plane while minimizing the maximum sensor movement for the sake of balancing battery power consumption. Previously, this problem was shown to be NP-hard for the general case. It was an open problem whether the problem is polynomial-time solvable for the case when sensors have a fixed number of sensing ranges. We study a special case of great practical significance that the sensors have the same sensing range and present an O(n3 log n) time algorithm. Our algorithm computes a permutation of the left and right endpoints of the moving ranges of all the sensors forming a barrier coverage and minimizes the maximum sensor movement distance by characterizing permutation switches that are critical. To the best of our knowledge, this is the first result for solving the 2-D MinMax barrier coverage problem for the case that all sensors have a uniform sensing range.Shuangjuan Li and Hong She
    corecore