5,469 research outputs found

    A General Approach for Minimizing the Maximum Interference of a Wireless Ad-Hoc Network in Plane

    Get PDF
    The interference reduction is one of the most important problems in the field of wireless sensor networks. Wireless sensor network elements are small mobile receiver and transmitters. The energy of processor and other components of each device is supplied by a small battery with restricted energy. One of the meanings that play an important role in energy consumption is the interference of signals. The interference of messages through a wireless network, results in message failing and transmitter should resend its message, thus the interference directly affect on the energy consumption of transmitter. This paper presents an algorithm which suggests the best subgraph for the input distribution of the nodes in the plane how the maximum interference of the proposed graph has the minimum value. The input of the application is the complete network graph, which means we know the cost of each link in the network graph. Without any lose of generality the Euclidean distance could be used as the weight of each link. The links are arranged and ranked according to their weights, in an iterative process the link which imposition minimum increase on the network interference with some extra conditions which is proposed in future sections, is added to resulting topology and is eliminated from list until all nodes are connected together. Experimental results show the efficiency of proposed algorithm not only for one dimensional known distribution like exponential node chain, but also for two dimensional distributions like two Exponential node chains and alpha-Spiral node chains

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201

    Complexity of increasing the secure connectivity in wireless ad hoc networks

    Get PDF
    We consider the problem of maximizing the secure connectivity in wireless ad hoc networks, and analyze complexity of the post-deployment key establishment process constrained by physical layer properties such as connectivity, energy consumption and interference. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by shared keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one extends the first problem by increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We prove that both problems are NP-hard and MAX-SNP with a reduction to MAX3SAT problem
    corecore