847 research outputs found

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Efficient on-demand multi-node charging techniques for wireless sensor networks

    Get PDF
    This paper deals with wireless charging in sensor networks and explores efficient policies to perform simultaneous multi-node power transfer through a mobile charger (MC).The proposed solution, called On-demand Multi-node Charging (OMC), features an original threshold-based tour launching (TTL) strategy, using request grouping, and a path planning algorithm based on minimizing the number of stopping points in the charging tour. Contrary to existing solutions, which focus on shortening the charging delays, OMC groups incoming charging requests and optimizes the charging tour and the mobile charger energy consumption. Although slightly increasing the waiting time before nodes are charged, this allows taking advantage of multiple simultaneous charges and also reduces node failures. At the tour planning level, a new modeling approach is used. It leverages simultaneous energy transfer to multiple nodes by maximizing the number of sensors that are charged at each stop. Given its NP-hardness, tour planning is approximated through a clique partitioning problem, which is solved using a lightweight heuristic approach. The proposed schemes are evaluated in offline and on-demand scenarios and compared against relevant state-of-the-art protocols. The results in the offline scenario show that the path planning strategy reduces the number of stops and the energy consumed by the mobile charger, compared to existing offline solutions. This is with further reduction in time complexity, due to the simple heuristics that are used. The results in the on-demand scenario confirm the effectiveness of the path planning strategy. More importantly, they show the impact of path planning, TTL and multi-node charging on the efficiency of handling the requests, in a way that reduces node failures and the mobile charger energy expenditure

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Probabilistic On-Demand Charging Scheduling for ISAC-Assisted WRSNs with Multiple Mobile Charging Vehicles

    Full text link
    The internet of things (IoT) based wireless sensor networks (WSNs) face an energy shortage challenge that could be overcome by the novel wireless power transfer (WPT) technology. The combination of WSNs and WPT is known as wireless rechargeable sensor networks (WRSNs), with the charging efficiency and charging scheduling being the primary concerns. Therefore, this paper proposes a probabilistic on-demand charging scheduling for integrated sensing and communication (ISAC)-assisted WRSNs with multiple mobile charging vehicles (MCVs) that addresses three parts. First, it considers the four attributes with their probability distributions to balance the charging load on each MCV. The distributions are residual energy of charging node, distance from MCV to charging node, degree of charging node, and charging node betweenness centrality. Second, it considers the efficient charging factor strategy to partially charge network nodes. Finally, it employs the ISAC concept to efficiently utilize the wireless resources to reduce the traveling cost of each MCV and to avoid the charging conflicts between them. The simulation results show that the proposed protocol outperforms cutting-edge protocols in terms of energy usage efficiency, charging delay, survival rate, and travel distance.Comment: Accepted for publication at the IEEE Global Communications Conference (GLOBECOM) 202

    A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network

    Get PDF
    A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor

    Safe and Secure Wireless Power Transfer Networks: Challenges and Opportunities in RF-Based Systems

    Full text link
    RF-based wireless power transfer networks (WPTNs) are deployed to transfer power to embedded devices over the air via RF waves. Up until now, a considerable amount of effort has been devoted by researchers to design WPTNs that maximize several objectives such as harvested power, energy outage and charging delay. However, inherent security and safety issues are generally overlooked and these need to be solved if WPTNs are to be become widespread. This article focuses on safety and security problems related WPTNs and highlight their cruciality in terms of efficient and dependable operation of RF-based WPTNs. We provide a overview of new research opportunities in this emerging domain.Comment: Removed some references, added new references, corrected typos, revised some sections (mostly I-B and III-C

    Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters

    Full text link
    In this paper, the design of a wireless communication device relying exclusively on energy harvesting is considered. Due to the inability of rechargeable energy sources to charge and discharge at the same time, a constraint we term the energy half-duplex constraint, two rechargeable energy storage devices (ESDs) are assumed so that at any given time, there is always one ESD being recharged. The energy harvesting rate is assumed to be a random variable that is constant over the time interval of interest. A save-then-transmit (ST) protocol is introduced, in which a fraction of time {\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting, with the remaining fraction 1 - {\rho} used for data transmission. The ratio of the energy obtainable from an ESD to the energy harvested is termed the energy storage efficiency, {\eta}. We address the practical case of the secondary ESD being a battery with {\eta} < 1, and the main ESD being a super-capacitor with {\eta} = 1. The optimal save-ratio that minimizes outage probability is derived, from which some useful design guidelines are drawn. In addition, we compare the outage performance of random power supply to that of constant power supply over the Rayleigh fading channel. The diversity order with random power is shown to be the same as that of constant power, but the performance gap can be large. Furthermore, we extend the proposed ST protocol to wireless networks with multiple transmitters. It is shown that the system-level outage performance is critically dependent on the relationship between the number of transmitters and the optimal save-ratio for single-channel outage minimization. Numerical results are provided to validate our proposed study.Comment: This is the longer version of a paper to appear in IEEE Transactions on Wireless Communication
    corecore