77 research outputs found

    Power-efficient multicasting algorithms for wireless ad hoc networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Cooperative Hyper-Scheduling based improving Energy Aware Life Time Maximization in Wireless Body Sensor Network Using Topology Driven Clustering Approach

    Get PDF
    The Wireless Body Sensor Network (WBSN) is an incredible developing data transmission network for modern day communication especially in Biosensor device networks. Due to energy consumption in biomedical data transfer have impacts of sink nodes get loss information on each duty cycle because of Traffic interruptions. The reason behind the popularity of WBSN characteristics contains number of sensor nodes to transmit data in various dense regions. Due to increasing more traffic, delay, bandwidth consumption, the energy losses be occurred to reduce the lifetime of the WBSN transmission. So, the sensor nodes are having limited energy or power, by listening to the incoming signals, it loses certain amount of energy to make data losses because of improper route selection. To improve the energy aware lifetime maximization through Traffic Aware Routing (TAR) based on scheduling. Because the performance of scheduling is greatly depending on the energy of nodes and lifetime of the network. To resolve this problem, we propose a Cooperative Hyper-scheduling (CHS) based improving energy aware life time maximization (EALTM) in Wireless Body sensor network using Topology Driven Clustering Approach (TDCA).Initially the method maintains the traces of transmission performed by different Bio-sensor nodes in different duty cycle. The method considers the energy of different nodes and history of earlier transmission from the Route Table (RT) whether the transmission behind the Sink node. Based on the RT information route discovery was performed using Traffic Aware Neighbors Discovery (TAND) to estimate Data Transmission Support Measure (DTSM) on each Bio-sensor node which its covers sink node. These nodes are grouped into topology driven clustering approach for route optimization. Then the priority is allocated based on The Max-Min DTSM, the Cooperative Hyper-scheduling was implemented to schedule the transmission with support of DTSM to reduce the energy losses in WBSN. This improves the energy level to maximization the life time of data transmission in WBSN than other methods to produce best performance in throughput energy level

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    QoS-driven adaptive resource allocation for mobile wireless communications and networks

    Get PDF
    Quality-of-service (QoS) guarantees will play a critically important role in future mobile wireless networks. In this dissertation, we study a set of QoS-driven resource allocation problems for mobile wireless communications and networks. In the first part of this dissertation, we investigate resource allocation schemes for statistical QoS provisioning. The schemes aim at maximizing the system/network throughput subject to a given queuing delay constraint. To achieve this goal, we integrate the information theory with the concept of effective capacity and develop a unified framework for resource allocation. Applying the above framework, we con-sider a number of system infrastructures, including single channel, parallel channel, cellular, and cooperative relay systems and networks, respectively. In addition, we also investigate the impact of imperfect channel-state information (CSI) on QoS pro-visioning. The resource allocation problems can be solved e±ciently by the convex optimization approach, where closed-form allocation policies are obtained for different application scenarios. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the delay constraint becomes loose, the optimal resource allocation policy converges to the water-filling scheme, where ergodic capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the channel inversion scheme under which the system operates at a constant rate and the zero-outage capacity can be achieved. In the second part of this dissertation, we study adaptive antenna selection for multiple-input-multiple-output (MIMO) communication systems. System resources such as subcarriers, antennas and power are allocated dynamically to minimize the symbol-error rate (SER), which is the key QoS metric at the physical layer. We propose a selection diversity scheme for MIMO multicarrier direct-sequence code- division-multiple-access (MC DS-CDMA) systems and analyze the error performance of the system when considering CSI feedback delay and feedback errors. Moreover, we propose a joint antenna selection and power allocation scheme for space-time block code (STBC) systems. The error performance is derived when taking the CSI feedback delay into account. Our numerical results show that when feedback delay comes into play, a tradeoff between performance and robustness can be achieved by dynamically allocating power across transmit antennas
    corecore