14,203 research outputs found

    Inference by Minimizing Size, Divergence, or their Sum

    Full text link
    We speed up marginal inference by ignoring factors that do not significantly contribute to overall accuracy. In order to pick a suitable subset of factors to ignore, we propose three schemes: minimizing the number of model factors under a bound on the KL divergence between pruned and full models; minimizing the KL divergence under a bound on factor count; and minimizing the weighted sum of KL divergence and factor count. All three problems are solved using an approximation of the KL divergence than can be calculated in terms of marginals computed on a simple seed graph. Applied to synthetic image denoising and to three different types of NLP parsing models, this technique performs marginal inference up to 11 times faster than loopy BP, with graph sizes reduced up to 98%-at comparable error in marginals and parsing accuracy. We also show that minimizing the weighted sum of divergence and size is substantially faster than minimizing either of the other objectives based on the approximation to divergence presented here.Comment: Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    DPP-PMRF: Rethinking Optimization for a Probabilistic Graphical Model Using Data-Parallel Primitives

    Full text link
    We present a new parallel algorithm for probabilistic graphical model optimization. The algorithm relies on data-parallel primitives (DPPs), which provide portable performance over hardware architecture. We evaluate results on CPUs and GPUs for an image segmentation problem. Compared to a serial baseline, we observe runtime speedups of up to 13X (CPU) and 44X (GPU). We also compare our performance to a reference, OpenMP-based algorithm, and find speedups of up to 7X (CPU).Comment: LDAV 2018, October 201
    • …
    corecore