16,055 research outputs found

    Towards Scalable Network Delay Minimization

    Full text link
    Reduction of end-to-end network delays is an optimization task with applications in multiple domains. Low delays enable improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches. In this paper, we consider the problem of network delay minimization via node upgrades. Although the problem is NP-hard, we show that probabilistic approximation for a restricted version can be obtained. We design scalable and high-quality techniques for the general setting based on sampling and targeted to different models of delay distribution. Our methods scale almost linearly with the graph size and consistently outperform competitors in quality

    Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges

    Full text link
    Computing \emph{all best swap edges} (ABSE) of a spanning tree TT of a given nn-vertex and mm-edge undirected and weighted graph GG means to select, for each edge ee of TT, a corresponding non-tree edge ff, in such a way that the tree obtained by replacing ee with ff enjoys some optimality criterion (which is naturally defined according to some objective function originally addressed by TT). Solving efficiently an ABSE problem is by now a classic algorithmic issue, since it conveys a very successful way of coping with a (transient) \emph{edge failure} in tree-based communication networks: just replace the failing edge with its respective swap edge, so as that the connectivity is promptly reestablished by minimizing the rerouting and set-up costs. In this paper, we solve the ABSE problem for the case in which TT is a \emph{single-source shortest-path tree} of GG, and our two selected swap criteria aim to minimize either the \emph{maximum} or the \emph{average stretch} in the swap tree of all the paths emanating from the source. Having these criteria in mind, the obtained structures can then be reviewed as \emph{edge-fault-tolerant single-source spanners}. For them, we propose two efficient algorithms running in O(mn+n2logn)O(m n +n^2 \log n) and O(mnlogα(m,n))O(m n \log \alpha(m,n)) time, respectively, and we show that the guaranteed (either maximum or average, respectively) stretch factor is equal to 3, and this is tight. Moreover, for the maximum stretch, we also propose an almost linear O(mlogα(m,n))O(m \log \alpha(m,n)) time algorithm computing a set of \emph{good} swap edges, each of which will guarantee a relative approximation factor on the maximum stretch of 3/23/2 (tight) as opposed to that provided by the corresponding BSE. Surprisingly, no previous results were known for these two very natural swap problems.Comment: 15 pages, 4 figures, SIROCCO 201

    Progressive damage assessment and network recovery after massive failures

    Get PDF
    After a massive scale failure, the assessment of damages to communication networks requires local interventions and remote monitoring. While previous works on network recovery require complete knowledge of damage extent, we address the problem of damage assessment and critical service restoration in a joint manner. We propose a polynomial algorithm called Centrality based Damage Assessment and Recovery (CeDAR) which performs a joint activity of failure monitoring and restoration of network components. CeDAR works under limited availability of recovery resources and optimizes service recovery over time. We modified two existing approaches to the problem of network recovery to make them also able to exploit incremental knowledge of the failure extent. Through simulations we show that CeDAR outperforms the previous approaches in terms of recovery resource utilization and accumulative flow over time of the critical service

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    A Bag-of-Paths Node Criticality Measure

    Full text link
    This work compares several node (and network) criticality measures quantifying to which extend each node is critical with respect to the communication flow between nodes of the network, and introduces a new measure based on the Bag-of-Paths (BoP) framework. Network disconnection simulation experiments show that the new BoP measure outperforms all the other measures on a sample of Erdos-Renyi and Albert-Barabasi graphs. Furthermore, a faster (still O(n^3)), approximate, BoP criticality relying on the Sherman-Morrison rank-one update of a matrix is introduced for tackling larger networks. This approximate measure shows similar performances as the original, exact, one
    corecore