154 research outputs found

    Performance Evaluation of Video Server Replication in Metro/Access Networks

    Get PDF
    Internet traffic is increasingly becoming a media-streaming traffic. Especially, Video-on-Demand (VoD) services are pushing the demand for broadband connectivity to the Internet, and optical fiber technology is being deployed in the access network to keep up with such increasing demand. To provide a more scalable network architecture for video delivery, network operators are currently considering novel metro/access network architectures which can accommodate replicated video servers directly in their infrastructure. When servers for VoD delivery are placed nearer to the end users, part of the traffic can be offloaded from the core segment of the network, and the end users can experience better Quality of Service (QoS). While the deployment of caching systems for traffic offloading has been studied in the core network, no work has already investigated the potential performance gains by replicating the content in the metro/access segment of the network, even closer to the users. In our work, we will compare the performance of video server replication in different metro/access network architectures, i.e. a metro ring architecture and a tree-based architecture, by considering both active and passive technologies. We will evaluate using both simulative and analytical methodologies how content providers could benefit from the deployment of replicas of video servers in terms of blocking probability of the VoD requests

    Video Traffic Flow Analysis in Distributed System during Interactive Session

    Get PDF
    Cost effective, smooth multimedia streaming to the remote customer through the distributed “video on demand” architecture is the most challenging research issue over the decade. The hierarchical system design is used for distributed network to satisfy more requesting users. The distributed hierarchical network system contains all the local and remote storage multimedia servers. The hierarchical network system is used to provide continuous availability of the data stream to the requesting customer. In this work, we propose a novel data stream that handles the methodology for reducing the connection failure and smooth multimedia stream delivery to the remote customer. The proposed session based single-user bandwidth requirement model presents the bandwidth requirement for any interactive session like pause, move slowly, rewind, skip some of the frame, and move fast with some constant number of frames. The proposed session based optimum storage finding algorithm reduces the search hop count towards the remote storage-data server. The modeling and simulation result shows the better impact over the distributed system architecture. This work presents the novel bandwidth requirement model at the interactive session and gives the trade-off in communication and storage costs for different system resource configurations

    Energy-Efficient VoD content delivery and replication in integrated metro/access networks

    Get PDF
    Today's growth in the demand for access bandwidth is driven by the success of the Video-on-Demand (VoD) bandwidth-consuming service. At the current pace at which network operators increase the end users' access bandwidth, and with the current network infrastructure, a large amount of video traffic is expected to flood the core/metro segments of the network in the near future, with the consequent risk of congestion and network disruption. There is a growing body of research studying the migration of content towards the users. Further, the current trend towards the integration of metro and access segments of the network makes it possible to deploy Metro Servers (MSes) that may serve video content directly from the novel integrated metro/access segment to keep the VoD traffic as local as possible. This paper investigates a potential risk of this solution, which is the increase in the overall network energy consumption. First, we identify a detailed power model for network equipment and MSes, accounting for fixed and load-proportional contributions. Then, we define a novel strategy for controlling whether to switch MSes and network interfaces on and off so as to strike a balance between the energy consumption for content transport through the network and the energy consumption for processing and storage in the MSes. By means of simulations and taking into account real values for the equipment power consumption, we show that our strategy is effective in providing the least energy consumption for any given traffic load

    Balance content allocation scheme for peer-service area CDN architecture for IPTV services

    Get PDF
    One of the main problems in IPTV technology is how to manage the huge amount of multimedia contents efficiently to meet the demands of users especially for Video on Demand (VoD) services.Content Distribution Networks (CDN) are used to solve this problem but the problem of load imbalance among servers still exists due to the dynamic changes in contents and user interests in an IPTV environment.In the VoD context, many content storage management architecture models are proposed: single point, hierarchal, distributed, and service peer area architectures.In the this paper we choose peer-service area architecture for CDN to study the load imbalance problem and try to handle it by modifying peer-service area architecture and proposing a balanced content allocation scheme that solves the load imbalance problem by replicating the contents based on their popularity.Experimental results show that this proposed allocation scheme can maintain the load balancing among servers and avoid over/under utilization of servers

    Caching Placement Strategies for Dynamic Content Delivery in Metro Area Networks

    Get PDF
    Video-on-Demand (VoD) traffic explosion has been one of the main driving forces behind the recent Internet evolution from a traditional connection-centric architecture towards the new content-centric paradigm. To cope with this evolution, caching of VoD contents closer to the users in core, metro and even metro-access optical network equipment is regarded to be a prime solution that could help mitigating this traffic growth. However, the optimal caches placement and dimensioning is not univocal, especially in the context of a dynamic network, as it depends on various parameters, such as network topology, users behavior and content popularity. In this paper, we focus on a dynamic VoD content delivery scenario in a metropolitan network implementing different caching strategies. We evaluate the performance of the various caching strategies in terms of network-capacity occupation showing the savings in resource occupation in each of the network segments. We also evaluate the effect of the distribution of the storage capacity on the overall average number of hops of all requests. The obtained numerical results show that, in general, a significant amount of network resources can be saved by enabling content caching near to end-users. Moreover, we show that blindly providing caching capability in access nodes may result unnecessary, whereas a balanced storage distribution between access and metro network segments provides the best performance

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    Ontwerp en evaluatie van content distributie netwerken voor multimediale streaming diensten.

    Get PDF
    Traditionele Internetgebaseerde diensten voor het verspreiden van bestanden, zoals Web browsen en het versturen van e-mails, worden aangeboden via één centrale server. Meer recente netwerkdiensten zoals interactieve digitale televisie of video-op-aanvraag vereisen echter hoge kwaliteitsgaranties (QoS), zoals een lage en constante netwerkvertraging, en verbruiken een aanzienlijke hoeveelheid bandbreedte op het netwerk. Architecturen met één centrale server kunnen deze garanties moeilijk bieden en voldoen daarom niet meer aan de hoge eisen van de volgende generatie multimediatoepassingen. In dit onderzoek worden daarom nieuwe netwerkarchitecturen bestudeerd, die een dergelijke dienstkwaliteit kunnen ondersteunen. Zowel peer-to-peer mechanismes, zoals bij het uitwisselen van muziekbestanden tussen eindgebruikers, als servergebaseerde oplossingen, zoals gedistribueerde caches en content distributie netwerken (CDN's), komen aan bod. Afhankelijk van de bestudeerde dienst en de gebruikte netwerktechnologieën en -architectuur, worden gecentraliseerde algoritmen voor netwerkontwerp voorgesteld. Deze algoritmen optimaliseren de plaatsing van de servers of netwerkcaches en bepalen de nodige capaciteit van de servers en netwerklinks. De dynamische plaatsing van de aangeboden bestanden in de verschillende netwerkelementen wordt aangepast aan de heersende staat van het netwerk en aan de variërende aanvraagpatronen van de eindgebruikers. Serverselectie, herroutering van aanvragen en het verspreiden van de belasting over het hele netwerk komen hierbij ook aan bod
    corecore