7,348 research outputs found

    Model based learning for accelerated, limited-view 3D photoacoustic tomography

    Get PDF
    Recent advances in deep learning for tomographic reconstructions have shown great potential to create accurate and high quality images with a considerable speed-up. In this work we present a deep neural network that is specifically designed to provide high resolution 3D images from restricted photoacoustic measurements. The network is designed to represent an iterative scheme and incorporates gradient information of the data fit to compensate for limited view artefacts. Due to the high complexity of the photoacoustic forward operator, we separate training and computation of the gradient information. A suitable prior for the desired image structures is learned as part of the training. The resulting network is trained and tested on a set of segmented vessels from lung CT scans and then applied to in-vivo photoacoustic measurement data

    Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks

    Get PDF
    The single-celled organism Physarum polycephalum efficiently constructs and minimises dynamical nutrient transport networks resembling proximity graphs in the Toussaint hierarchy. We present a particle model which collectively approximates the behaviour of Physarum. We demonstrate spontaneous transport network formation and complex network evolution using the model and show that the model collectively exhibits quasi-physical emergent properties, allowing it to be considered as a virtual computing material. This material is used as an unconventional method to approximate spatially represented geometry problems by representing network nodes as nutrient sources. We demonstrate three different methods for the construction, evolution and minimisation of Physarum-like transport networks which approximate Steiner trees, relative neighbourhood graphs, convex hulls and concave hulls. We extend the model to adapt population size in response to nutrient availability and show how network evolution is dependent on relative node position (specifically inter-node angle), sensor scaling and nutrient concentration. We track network evolution using a real-time method to record transport network topology in response to global differences in nutrient concentration. We show how Steiner nodes are utilised at low nutrient concentrations whereas direct connections to nutrients are favoured when nutrient concentration is high. The results suggest that the foraging and minimising behaviour of Physarum-like transport networks reflect complex interplay between nutrient concentration, nutrient location, maximising foraging area coverage and minimising transport distance. The properties and behaviour of the synthetic virtual plasmodium may be useful in future physical instances of distributed unconventional computing devices, and may also provide clues to the generation of emergent computation behaviour by Physarum. © Springer Science+Business Media B.V. 2010

    Deep Boosted Regression for MR to CT Synthesis

    Get PDF
    Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification. However, attenuation correction is particularly challenging for PET-MRI as neither PET nor magnetic resonance imaging (MRI) can directly image tissue attenuation properties. MRI-based computed tomography (CT) synthesis has been proposed as an alternative to physics based and segmentation-based approaches that assign a population-based tissue density value in order to generate an attenuation map. We propose a novel deep fully convolutional neural network that generates synthetic CTs in a recursive manner by gradually reducing the residuals of the previous network, increasing the overall accuracy and generalisability, while keeping the number of trainable parameters within reasonable limits. The model is trained on a database of 20 pre-acquired MRI/CT pairs and a four-fold random bootstrapped validation with a 80:20 split is performed. Quantitative results show that the proposed framework outperforms a state-of-the-art atlas-based approach decreasing the Mean Absolute Error (MAE) from 131HU to 68HU for the synthetic CTs and reducing the PET reconstruction error from 14.3% to 7.2%.Comment: Accepted at SASHIMI201
    • …
    corecore