302 research outputs found

    Minimax Estimation of Kernel Mean Embeddings

    Full text link
    In this paper, we study the minimax estimation of the Bochner integral ΞΌk(P):=∫Xk(β‹…,x) dP(x),\mu_k(P):=\int_{\mathcal{X}} k(\cdot,x)\,dP(x), also called as the kernel mean embedding, based on random samples drawn i.i.d.~from PP, where k:XΓ—Xβ†’Rk:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R} is a positive definite kernel. Various estimators (including the empirical estimator), ΞΈ^n\hat{\theta}_n of ΞΌk(P)\mu_k(P) are studied in the literature wherein all of them satisfy βˆ₯ΞΈ^nβˆ’ΞΌk(P)βˆ₯Hk=OP(nβˆ’1/2)\bigl\| \hat{\theta}_n-\mu_k(P)\bigr\|_{\mathcal{H}_k}=O_P(n^{-1/2}) with Hk\mathcal{H}_k being the reproducing kernel Hilbert space induced by kk. The main contribution of the paper is in showing that the above mentioned rate of nβˆ’1/2n^{-1/2} is minimax in βˆ₯β‹…βˆ₯Hk\|\cdot\|_{\mathcal{H}_k} and βˆ₯β‹…βˆ₯L2(Rd)\|\cdot\|_{L^2(\mathbb{R}^d)}-norms over the class of discrete measures and the class of measures that has an infinitely differentiable density, with kk being a continuous translation-invariant kernel on Rd\mathbb{R}^d. The interesting aspect of this result is that the minimax rate is independent of the smoothness of the kernel and the density of PP (if it exists). This result has practical consequences in statistical applications as the mean embedding has been widely employed in non-parametric hypothesis testing, density estimation, causal inference and feature selection, through its relation to energy distance (and distance covariance)

    Pinsker estimators for local helioseismology

    Full text link
    A major goal of helioseismology is the three-dimensional reconstruction of the three velocity components of convective flows in the solar interior from sets of wave travel-time measurements. For small amplitude flows, the forward problem is described in good approximation by a large system of convolution equations. The input observations are highly noisy random vectors with a known dense covariance matrix. This leads to a large statistical linear inverse problem. Whereas for deterministic linear inverse problems several computationally efficient minimax optimal regularization methods exist, only one minimax-optimal linear estimator exists for statistical linear inverse problems: the Pinsker estimator. However, it is often computationally inefficient because it requires a singular value decomposition of the forward operator or it is not applicable because of an unknown noise covariance matrix, so it is rarely used for real-world problems. These limitations do not apply in helioseismology. We present a simplified proof of the optimality properties of the Pinsker estimator and show that it yields significantly better reconstructions than traditional inversion methods used in helioseismology, i.e.\ Regularized Least Squares (Tikhonov regularization) and SOLA (approximate inverse) methods. Moreover, we discuss the incorporation of the mass conservation constraint in the Pinsker scheme using staggered grids. With this improvement we can reconstruct not only horizontal, but also vertical velocity components that are much smaller in amplitude

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies
    • …
    corecore