22 research outputs found

    Minimal triangulations of sphere bundles over the circle

    Full text link
    For integers d2d \geq 2 and ϵ=0\epsilon = 0 or 1, let S1,d1(ϵ)S^{1, d - 1}(\epsilon) denote the sphere product S1×Sd1S^{1} \times S^{d - 1} if ϵ=0\epsilon = 0 and the twisted Sd1S^{d - 1} bundle over S1S^{1} if ϵ=1\epsilon = 1. The main results of this paper are: (a) if dϵd \equiv \epsilon (mod 2) then S1,d1(ϵ)S^{1, d - 1}(\epsilon) has a unique minimal triangulation using 2d+32d + 3 vertices, and (b) if d1ϵd \equiv 1 - \epsilon (mod 2) then S1,d1(ϵ)S^{1, d - 1}(\epsilon) has minimal triangulations (not unique) using 2d+42d + 4 vertices. The second result confirms a recent conjecture of Lutz. The first result provides the first known infinite family of closed manifolds (other than spheres) for which the minimal triangulation is unique. Actually, we show that while S1,d1(ϵ)S^{1, d - 1}(\epsilon) has at most one (2d+3)(2d + 3)-vertex triangulation (one if dϵd \equiv \epsilon (mod 2), zero otherwise), in sharp contrast, the number of non-isomorphic (2d+4)(2d + 4)-vertex triangulations of these dd-manifolds grows exponentially with dd for either choice of ϵ\epsilon. The result in (a), as well as the minimality part in (b), is a consequence of the following result: (c) for d3d \geq 3, there is a unique (2d+3)(2d + 3)-vertex simplicial complex which triangulates a non-simply connected closed manifold of dimension dd. This amazing simplicial complex was first constructed by K\"{u}hnel in 1986. Generalizing a 1987 result of Brehm and K\"{u}hnel, we prove that (d) any triangulation of a non-simply connected closed dd-manifold requires at least 2d+32d + 3 vertices. The result (c) completely describes the case of equality in (d). The proofs rest on the Lower Bound Theorem for normal pseudomanifolds and on a combinatorial version of Alexander duality.Comment: 15 pages, Revised, To appear in `Journal of Combinatorial Theory, Ser. A

    Enumerative properties of triangulations of spherical bundles over S^1

    Get PDF
    We give a complete characterization of all possible pairs (v,e), where v is the number of vertices and e is the number of edges, of any simplicial triangulation of an S^k-bundle over S^1. The main point is that Kuhnel's triangulations of S^{2k+1} x S^1 and the nonorientable S^{2k}-bundle over S^1 are unique among all triangulations of (n-1)-dimensional homology manifolds with first Betti number nonzero, vanishing second Betti number, and 2n+1 vertices.Comment: To appear in European J. of Combinatorics. Many typos fixe

    Stacked polytopes and tight triangulations of manifolds

    Get PDF
    Tightness of a triangulated manifold is a topological condition, roughly meaning that any simplexwise linear embedding of the triangulation into euclidean space is "as convex as possible". It can thus be understood as a generalization of the concept of convexity. In even dimensions, super-neighborliness is known to be a purely combinatorial condition which implies the tightness of a triangulation. Here we present other sufficient and purely combinatorial conditions which can be applied to the odd-dimensional case as well. One of the conditions is that all vertex links are stacked spheres, which implies that the triangulation is in Walkup's class K(d)\mathcal{K}(d). We show that in any dimension d4d\geq 4 \emph{tight-neighborly} triangulations as defined by Lutz, Sulanke and Swartz are tight. Furthermore, triangulations with kk-stacked vertex links and the centrally symmetric case are discussed.Comment: 28 pages, 2 figure

    Hamiltonian submanifolds of regular polytopes

    Full text link
    We investigate polyhedral 2k2k-manifolds as subcomplexes of the boundary complex of a regular polytope. We call such a subcomplex {\it kk-Hamiltonian} if it contains the full kk-skeleton of the polytope. Since the case of the cube is well known and since the case of a simplex was also previously studied (these are so-called {\it super-neighborly triangulations}) we focus on the case of the cross polytope and the sporadic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-manifolds in the dd-dimensional cross polytope. These are the "regular cases" satisfying equality in Sparla's inequality. In particular, we present a new example with 16 vertices which is highly symmetric with an automorphism group of order 128. Topologically it is homeomorphic to a connected sum of 7 copies of S2×S2S^2 \times S^2. By this example all regular cases of nn vertices with n<20n < 20 or, equivalently, all cases of regular dd-polytopes with d9d\leq 9 are now decided.Comment: 26 pages, 4 figure

    The flag upper bound theorem for 3- and 5-manifolds

    Get PDF
    International audienceWe prove that among all flag 3-manifolds on n vertices, the join of two circles with [n 2] and [n 2] vertices respectively is the unique maximizer of the face numbers. This solves the first case of a conjecture due to Lutz and Nevo. Further, we establish a sharp upper bound on the number of edges of flag 5-manifolds and characterize the cases of equality. We also show that the inequality part of the flag upper bound conjecture continues to hold for all flag 3-dimensional Eulerian complexes and characterize the cases of equality in this class
    corecore