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Abstract

We give a complete characterization of all possible pairs ( f0, f1), where f0 is the number of vertices
and f1 is the number of edges, of any triangulation of an Sk -bundle over S1. The main point is that Kühnel’s
triangulations of S2k+1

× S1 and the nonorientable S2k -bundle over S1 are unique among all triangulations
of (n − 1)-dimensional homology manifolds with 2n + 1 vertices, first Betti number nonzero, and whose
orientation double cover has vanishing second Betti number.
c© 2007 Elsevier Ltd. All rights reserved.

The basic enumerative invariant of any triangulation of an (n − 1)-dimensional compact
manifold is its f -vector, ( f0, . . . , fn−1), where fi is the number of i-dimensional simplices.
There are very few manifolds for which a complete description of all f -vectors is known. Indeed,
in dimension five and above there are no manifolds where this problem has been solved. The f -
vectors of compact surfaces were determined by Ringel [8], and Jungerman and Ringel [3]. In
addition to S4, the 3-manifolds S3, RP3, S2

× S1 and the nonorientable S2-bundle over S1 were
covered by Walkup [11]. All possible f -vectors of CP2, (S2

× S2)#(S2
× S2), S3

× S1 and
K3-surfaces were determined in [10]. Our Theorem 4.3 gives all f -vectors of the nonorientable
S3-bundle over S1.

While a thorough understanding of f2 (and higher) remains elusive in dimensions above four,
all pairs ( f0, f1) are known for several higher dimensional manifolds. Brehm and Kühnel proved
that the minimum number of vertices for a PL-triangulation of S2k+1

× S1 is 4k + 7, while the
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minimum number of vertices for a PL-triangulation of the nonorientable S2k-bundle over S1 is
4k + 5 [2]. This was extended in [10] to all triangulations for the same collection of spherical
bundles over S1. In addition, all possible combinations for the number of vertices and edges were
given for S2k+1

× S1 [10, Proposition 5.4]. Theorem 4.1 provides a complete characterization of
all possible pairs ( f0, f1) for all spherical bundles over S1.

Minimal triangulations of S2k+1
× S1 and the nonorientable S2k-bundles over S1 were

originally found by Kühnel [6]. In Section 3 we prove that any triangulation of an Sk-bundle over
S1 with 2k +5 vertices is combinatorially isomorphic to one of Kühnel’s minimal triangulations.
The proof of Theorem 4.1 consists of combining this uniqueness result with the constructive
methods in Sections 2 and 4.

As will become apparent, all of our constructions yield combinatorial manifolds. Hence, our
results also apply verbatim when restricted to this smaller class of triangulations. Immediately
after we wrote this paper we discovered the arXive preprint of Bhaskar Bagchi and Basudeb
Datta, “The lower bound theorem and minimal triangulations of sphere bundles over the circle,”
arXiv:math.GT/0610829, which has results very similar (but not identical) to ours [1]. Bagchi
and Datta consider the category of manifold triangulations and, in addition to constructing
minimal triangulations of spherical bundles over S1, prove that any non-simply connected
(n − 1)-dimensional manifold with 2n + 1 vertices is isomorphic to one of Kühnel’s minimal
triangulations.

1. Preliminaries

Throughout, ∆ is a connected, pure, (n − 1)-dimensional simplicial complex with m vertices
and vertex set V = {v1, . . . , vm}. A simplicial complex is pure if all of its facets (maximal
faces) have the same dimension. In addition, we will always assume that n ≥ 4. The geometric
realization of ∆, |∆|, is the union in Rm over all faces {vi1 , . . . , vi j } of ∆ of the convex hull
of {ei1 , . . . , ei j }, where {e1, . . . , em} is the standard basis of Rm . We say ∆ is homeomorphic
to another space whenever |∆| is. A triangulation of a topological space M is any simplicial
complex ∆ such that ∆ is homeomorphic to M .

The f -vector of ∆ is ( f0, . . . , fn−1), where fi is the number of i-dimensional faces in ∆.
Sometimes it is convenient to set f−1 = 1, corresponding to the empty set. The face polynomial
of ∆ is

f∆(x) = f−1xn
+ f0xn−1

+ · · · + fn−2x + fn−1.

The h-vector of ∆ is (h0, . . . , hn) and is defined so that the corresponding h-polynomial,
h∆(x) = h0xn

+ h1xn−1
+ · · · + hn−1x + hn , satisfies h∆(x + 1) = f∆(x). Equivalently,

hi =

i∑
j=0

(−1)i− j
(

n − j

n − i

)
f j−1. (1)

Each fi is a nonnegative linear combination of h0, . . . , hi+1. Specifically,

fi−1 =

i∑
j=0

(
n − j

n − i

)
h j . (2)

Evidently the f -vector and h-vector encode the same information. One of the advantages
of the h-vector is that the linear equalities satisfied by triangulations of manifolds have a very
simple form.

http://arXiv:math.GT/0610829
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Theorem 1.1 ([5]). If ∆ is a triangulation of a closed manifold, then

hn−i − hi = (−1)i
(n

i

)
(χ(∆) − χ(Sn−1)). (3)

In fact, Klee’s formula holds for the more general class of semi-Eulerian complexes.
When ∆ is homeomorphic to a manifold, Klee’s formula (3) allows us to specify the f -vector

of ∆ using only h0, . . . , hbn/2c. This is one of the motivations behind introducing the g-vector.
For i ≤ bn/2c define

gi = hi − hi−1.

In view of (3), the f -vector of a triangulation of a manifold is determined by its g-vector
(g0, . . . , gbn/2c). As we will see,

g2 = h2 − h1 = f1 − n f0 +

(
n + 1

2

)
plays a special role.

A stacked polytope is the following inductively defined class of polytopes. The simplex
is a stacked polytope and any polytope obtained from a stacked polytope by adding
a pyramid to a facet is a stacked polytope. Stacked polytopes are simplicial and the
boundary of a stacked polytope is a stacked sphere. From a purely combinatorial point
of view, a stacked sphere is obtained by beginning with the boundary of a simplex
and then repeatedly subdividing facets, i.e. replacing a facet {vi1 , . . . , vin } with n facets
{v′, vi2 , . . . , vin }, {vi1 , v

′, vi3 , . . . , vin }, . . . , {vi1 , . . . , vin−1 , v
′
}, where v′ is a new vertex.

One method for constructing triangulations of spherical bundles over S1 is to start with a
triangulation ∆ of Sn , identify two facets and then remove the identified facet. We say the
resulting space is obtained from ∆ by handle addition. As long as there is no path of length less
than three between each pair of identified vertices in ∆, the resulting space will be a simplicial
complex homeomorphic to an Sn−1-bundle over S1. As there are, up to homeomorphism, only
two such bundles, Sn−1

× S1 and a nonorientable space [9], the topological type of the quotient
space is determined by the orientation of the identification. When the original sphere is a
stacked sphere we call such a space an identified stacked sphere or ISS. The importance of
ISS’s is demonstrated by the following. Here, βi is the i th Betti number with respect to rational
coefficients.

Theorem 1.2 ([10, Theorem 4.30]). Suppose ∆ is a triangulation of an oriented (n − 1)

homology manifold with β1 6= 0, β2 = 0 and n ≥ 5. Then g2 ≥ β1

(
n+1

2

)
. Furthermore, if

g2 = β1

(
n+1

2

)
, then ∆ is an ISS.

Corollary 1.3. If ∆ is a triangulation of an Sn−2-bundle over S1 with n ≥ 5, then g2 ≥

(
n+1

2

)
.

Furthermore, if g2 =

(
n+1

2

)
, then ∆ is an ISS.

Proof. If ∆ is orientable, then the above theorem applies, so assume that ∆ is not orientable.
Let ∆′ be the induced triangulation on Sn−2

× S1, the orientation double cover of ∆. Direct
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computation and the fact that fi (∆′) = 2 fi (∆) for all i ≥ 0 implies that [10, Proposition 4.2]

g2(∆) =

g2(∆′) +

(
n+1

2

)
2

.

Since g2(∆′) ≥

(
n+1

2

)
, so is g2(∆). If g2(∆) =

(
n+1

2

)
, then g2(∆′) =

(
n+1

2

)
which implies

that ∆′ is an ISS. As the link of every vertex of an ISS is a stacked sphere, the same holds in the
base space ∆. But any complex in which the link of every vertex is a stacked sphere is obtained
by identifying β1 facets of a stacked sphere [4,11]. �

Since g2 ≤

(
g1+1

2

)
for any simplicial complex, the above theorem implies that any triangulation

of an Sn−2-bundle over S1 has at least 2n + 1 vertices. We call a triangulation of an Sn−2-bundle
over S1 with exactly 2n + 1 vertices a minimal identified stacked sphere, or MISS.

2. Constructing ISS’s

In this section we show how to construct a MISS for any n ≥ 3. Our construction will turn out
to be identical to Kühnel’s minimal triangulations of S2k+1

× S1 and nonorientable S2k-bundles
over S1. We also show how with one extra vertex it is possible to triangulate the other sphere
bundles over S1.

Let ∆1 be the boundary of ∆n , the n-simplex. From this point forward we identify the
vertices {v1, . . . , vm} with {1, . . . , m}. So, ∆1 is the complex whose facets are the n-subsets
of {1, . . . , n + 1}. Define ∆i inductively by setting ∆i+1 equal to the complex obtained by
subdividing the facet {i + 1, . . . , n + i} in ∆i with new vertex n + i + 1. Evidently each ∆i is a
stacked sphere.

In order to verify that we can form an ISS we introduce the following notation. The distance
between two vertices i and j , denoted d(i, j), is defined to be the minimal length of an edge path
between them. To each vertex i we associate the vector

xi =


d(i, 1)

.

.

.

d(i, n)

 ,

whose entries consist of the distances from vertex i to the vertices j ∈ {1, . . . , n}. In ∆1 we have
initial vectors:

x1 =


0
1
.

.

.

1

 , x2 =


1
0
.

.

.

1

 , . . . , xn =


1
1
.

.

.

0

 , xn+1 =


1
1
.

.

.

1

 .

Observe that vertex n + i is introduced in ∆i and x1, . . . , xn+i are unaltered by later
subdivisions. Furthermore, for i ≥ 2,

x ( j)
n+i = min(x ( j)

i , . . . , x ( j)
i+n−1) + 1. (4)
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Here, x ( j)
i is the j-th coordinate of xi . Once we reach ∆2n+1 we have the following distance

table.

x1 . . . xn+1 xn+2 . . . x2n+1 x2n+2 x2n+3 . . . x3n+1
1 0 . . . 1 2 . . . 2 3 3 . . . 3
2 1 . . . 1 1 . . . 2 2 3 . . . 3
...

...
...

...
...

...
...

...
...

...
...

n 1 . . . 1 1 . . . 2 2 2 . . . 3.

(5)

Examining the last n columns, we see that an ISS can be formed by identifying the pairs of
vertices (1, 2n + 2), (2, 2n + 3), . . . , (n, 3n + 1).

Definition 2.1. Mn is the MISS obtained by the above identification on ∆2n+1.

What are the facets of Mn? At the i-th step all n-subsets of {i, i +1, . . . , n + i} become facets
of ∆i , except {i, i + 1, . . . , n + i − 1}, which has been removed from ∆i−1 to be replaced by the
other facets. However, for every i, 2 ≤ i ≤ 2n+1, each consecutive subset {i, i +1, . . . , i +n−1}

is eliminated in ∆i+1. This leaves {1, . . . , n} and {2n + 2, . . . , 3n + 1} as the only consecutive
subsets which could be facets. These are eliminated when the two facets of ∆2n+1 are identified
and removed. Thus, the facets of Mn are all n-subsets of the cyclic 2n + 1 sets generated
by the set {1, . . . , n + 1} under the cyclic action modulo 2n + 1, other than those which are
consecutive. This is exactly Kühnel’s generalization of Császár’s torus. Hence, when n is odd,
Mn is homeomorphic to Sn−2

× S1, and when n is even, Mn is the nonorientable Sn−2-bundle
over S1 [6].

Suppose the above algorithm is extended one more step to ∆2n+2. Then all of the entries of
the last two columns are at least three. So we can form an ISS in many different ways. Two
possibilities are to identify the pairs (1, 2n + 3), . . . , (3n, n − 2), (3n + 1, n − 1), (3n + 2, n), or
use the same pairs, but exchange the last two, i.e. (1, 2n +3), . . . , (3n, n −2), (3n +1, n), (3n +

2, n − 1). Since these two identifications have opposite orientations, they must produce the two
different Sn−2-bundles over S1. As a consequence we have the following.

Theorem 2.2. There exist triangulations of S2k
× S1 with 4k + 6 vertices. There exist

triangulations of the nonorientable S2k+1-bundle over S1 with 4k + 8 vertices.

This was conjectured by Lutz in [7]. By using identifications which differ by an even permutation
it is not hard to see that the 4k + 6 vertex triangulations of S2k

× S1 and the 4k + 8 vertex
triangulations of the nonorientable S2k+1-bundle over S1 are not unique.

3. Uniqueness of a MISS

Throughout this section ∆ is a stacked sphere. In order to prove that any MISS is
combinatorially isomorphic to Mn we require several preliminary results.

Definition 3.1. A stack of a stacked sphere is the set of facets created by a maximal subsequence
of subdivisions s1 . . . sk , where si subdivides a facet created by si−1. We will sometimes call a
stacked sphere with l stacks an l-stacked sphere. The top of a stack is the set of facets created by
the last subdivision of the stack. The top vertex of the stack is the vertex introduced by sk .
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Fig. 1. A two-stacked sphere.

Example 3.2. The two-dimensional sphere in Fig. 1 is a two-stacked sphere. The unlabeled
vertices are the original vertices of the boundary of the tetrahedron. One stack has top vertex
2 and is formed by the subdivisions corresponding to vertices 1 and 2. The other stack is formed
by the subdivisions for vertices 1, 3, and 4 and its top vertex is 4.

Proposition 3.3. Suppose a MISS is obtained from a stacked sphere ∆ by handle addition. Then
∆ has at most two stacks. Further, the top of every stack must have one of the two identified
facets.

Proof. At least one facet from the top of each stack must be identified. Otherwise, the vertex
corresponding to the last subdivision in the stack could be removed from the MISS, contrary to
its definition. Since the tops of distinct stacks are disjoint, there can be at most two stacks. �

Proposition 3.4. If M is a MISS, then M can be obtained by handle addition on ∆, where ∆
has only one stack.

Proof. By Theorem 1.2 and Proposition 3.3 there exists ∆′ a stacked sphere with one or two
stacks so that M is obtained by handle addition on ∆′. If ∆′ has one stack we are done, so
assume that ∆′ has two stacks.

Denote the vertices of the identified facets by {1, . . . , n} and {1′, . . . , n′
}, where vertex i is

identified with vertex i ′ and 1 is the top vertex of its stack. Designate the remaining vertices at
the top of their respective stacks, n + 1 and (n + 1)′. Now, we undo the subdivision that created
1 and subdivide the facet {1′, . . . , n′

} with new vertex (n + 1)′′. Call this new stacked sphere ∆′′.
For 2 ≤ i ≤ n the distance between i and i ′ is still at least three. In addition, d(n + 1, (n + 1)′′)

is at least three. If not, then there is an edge between n + 1 and some i ′, which is impossible as
that would imply that d(i, i ′) ≤ 2. It is now easy to check that the MISS obtained by identifying
i with i ′ for 2 ≤ i ≤ n, and the pair of vertices (n +1), (n +1)′′ is combinatorially isomorphic to
M . Evidently we can repeat this procedure until one of the stacks is gone, resulting in the desired
∆. �

Theorem 3.5. Let M be an (n − 1)-dimensional MISS. Then M is isomorphic to Mn .
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Proof. By Theorem 1.2 and Proposition 3.4 we can assume that M is obtained by handle addition
from a one-stacked sphere ∆. Label the vertices of ∆ with {1, . . . , 3n + 1}, where {1, . . . , n + 1}

is the original boundary of the (n − 1) simplex and the order of the vertices reflects the order
of the subdivisions. Without loss of generality we can assume that the first subdivided facet is
{2, . . . , n +1}. Since ∆ is a one-stacked sphere no other vertex will share an edge with 1. Hence,
one of the identified facets must contain the vertex 1. Otherwise, the closed star of 1 could be
removed from M and replaced by {2, . . . , n + 1}, contradicting the fact that M is a MISS. Thus
one of the identified facets consists of n of the first n + 1 vertices (including the vertex 1), and
the other contains the top vertex of the stack, vertex 3n + 1.

Now consider the distances d(i, j) for 1 ≤ i ≤ n +1 as in (5), but with an extra row for vertex
n + 1. Since ∆ is a one-stacked sphere the table can be constructed as follows. It begins

x1 x2 . . . xn xn+1 xn+2
1 0 1 . . . 1 1 2
2 1 0 . . . 1 1 1
3 1 1 . . . 1 1 1
...

...
...

...
...

...
...

n 1 1 . . . 0 1 1
n + 1 1 1 . . . 1 0 1.

Since vertex n + 2 was formed by subdividing the facet {2, . . . , n + 1}, the xn+2 column is
obtained by “crossing off” the first column and applying (4) to the remaining n columns. Since
∆ is a one-stacked sphere, each successive column is obtained in the same fashion. Delete one
previous column and apply the analog of (4) to the remaining n columns. The crossed off column
corresponds to the vertex in the current top of the stack which is not in the newly subdivided facet.

We claim that the first n columns crossed off are a subset of those headed by x1, . . . , xn+1.
Suppose not. In view of (4) this implies there are two indices i and j such that 2 ≤ i < j ≤ n +1
and that the i th and j th coordinates of x2n+1 and all previous xk are 1 or 0. However, this makes
it impossible for any of the remaining vectors to have a 3 in either of the i th or j th coordinates.
In particular, no vertex may be identified with vertices i or j , contrary to the fact that one of the
identified facets contains vertex 1. So, renumbering the vertices {2, . . . , n + 1} if necessary, the
first n subdivisions are identical to those made in constructing ∆n+1 and the distance table for ∆
begins

x1 . . . xn+1 xn+2 . . . x2n+1
1 0 . . . 1 2 . . . 2
2 1 . . . 1 1 . . . 2
...

...
...

...
...

...
...

n 1 . . . 1 1 . . . 2
n + 1 1 . . . 0 1 . . . 1.

(6)

At the next step the column headed by xn+1 must be crossed off. If not, then x2n+2 and all of
its predecessors do not contain any coordinate with a value of 3 or greater. This would leave only
n −1 vertices which could be identified. Furthermore, since x2n+2 = (3, 2, . . . , 2), vertex 2n +2
must be identified with vertex 1. Now repeating the argument in each of the subsequent columns
shows that ∆ and M are constructed in exactly the same fashion as ∆2n+1 and Mn . �

By Theorem 1.2 and the argument in Corollary 1.3 we immediately obtain the following
result.
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Theorem 3.6. If n ≥ 5, then Mn is the unique triangulation of any (n − 1)-dimensional
homology manifold with 2n + 1 vertices, β1 6= 0 and whose orientation double cover has
vanishing second Betti number.

4. All possible ( f0, f1) pairs

An S1-bundle over S1 is a torus or Klein bottle, and their possible f -vectors are well known.
Walkup provided a characterization of all f -vectors of S2-bundles over S1 [11]. Theorems 1.2
and 3.5 determine the minimum number of vertices and edges for any Sk-bundle over S1 when
k ≥ 3. All possible pairs ( f0, f1) for triangulations of S2k+1

× S1 were established in [10]. To
do this for the other spherical bundles over S1 we use sequences of bistellar moves.

Suppose ∆ is a triangulation of an (n − 1)-manifold and let A and B be disjoint subsets of
vertices of ∆ with |A| = 2 and |B| = n − 1. Furthermore, assume that the induced subcomplex
on A ∪ B is the suspension of B. Equivalently, a subset of A ∪ B is a face of ∆ if and only if it
does not contain both vertices in A. In this case the induced subcomplex is an (n − 1)-ball with
boundary ∂ A ∗ ∂ B, so we can replace it with A ∗ ∂ B, an (n − 1)-ball with the same boundary,
without changing the homeomorphism type of ∆. As long as n ≥ 4 the vertices of the new
complex will be the same, and the edge set will be the edge set of ∆ with one new edge between
the vertices of A. This transformation is called a bistellar move on A ∪ B.

Theorem 4.1. Let ∆ be a triangulation of an Sk-bundle over S1, k ≥ 2. If k is odd and ∆ is
orientable, or k is even and ∆ is nonorientable, then f0 ≥ 2k + 5. Otherwise, f0 ≥ 2k + 6.
Both bounds are sharp and in all cases, if there exists a triangulation with f0 vertices, then there

exists a triangulation with f1 edges and f0 vertices if and only if (k + 2) f0 ≤ f1 ≤

(
f0
2

)
.

Proof. For k = 2, see [11]. So assume for the rest of the proof that k ≥ 3. The minimum
values for f0 follow from Corollary 1.3 and Theorem 3.5. The lower bounds for f1 are given
by Corollary 1.3, while the upper bond holds trivially for any simplicial complex. It remains to
show that there exists a triangulation for each such f1.

Set n = k + 2, so n ≥ 5 and is the cardinality of every facet. Suppose f0 satisfies the above
inequalities. First we can construct an ISS homeomorphic to the desired bundle by taking the
stacked sphere ∆ f0 and identifying the pairs of vertices {1, f0 +1}, {2, f0 +2}, . . . , {n −1, f0 +

n−1}, {n, f0+n} or the pairs of vertices {1, f0+1}, {2, f0+2}, . . . , {n−1, f0+n}, {n, f0+n−1},
where the choice of pairing depends on whether the orientable or nonorientable bundle is under

consideration. Since any stacked sphere with f0 + n vertices has
(

n+1
2

)
+ ( f0 − 1)n edges,

the resulting ISS will have n f0 edges. Thus, it is suffices to show how to perform successive
bistellar moves on this ISS until the 1-skeleton is the complete graph on the f0 vertices. For the
first pairing this was done in [10, Theorem 5.2], but we repeat a similar argument here for the
convenience of the reader.

For the first pairing the missing edges in the resulting MISS consist of all pairs of vertices
{i, j} with n < j − i < f0 − n. Equivalently, the cyclic distance between i and j is at least
n + 1. Group the pairs of nonedges according to the size of j − i . So the first group consists of
{1, n +2}, {2, n +3}, . . ., the second group {1, n +3}, {2, n +4}, etc. The first bistellar move uses
A = {1, n + 2} and B = {2, 3, 5, 6, . . . , n + 1}. The next bistellar move uses A = {2, n + 3} and
B = {3, 4, 6, 7, . . . , n + 2}. We continue with bistellar moves which introduce an edge between
each pair of nonedges in the first group with A the pair {i, j} and B consisting of {i + 1, i + 2}

and the n − 3 vertices preceding j .
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In order to get edges for the second group of nonedge pairs we proceed as follows. Let
A = {1, n + 3} and B = {2, 3, 6, 7, . . . , n + 2}. The previous bistellar move using {2, n + 3} and
{3, 4, 6, 7, . . . , n + 2} makes it possible to execute a bistellar move with this A and B. Similarly,
it is possible to use A = {2, n + 4} and B = {3, 4, 7, 8, . . . , n + 3} to force an edge between
2 and n + 4 because of the previous bistellar move on {3, n + 4} and {4, 5, 7, 8, . . . , n + 3}.
Each pair {i, j} in the second group uses the bistellar move associated to {i + 1, j} in the first
group. This procedure allows us to take care of all of the nonedge pairs in the second group.
Now each succeeding group of nonedges repeats the process of using the proceeding group’s
bistellar moves in order to perform their own bistellar moves until there are no more nonedge
pairs remaining and the 1-skeleton is the complete graph.

What are the nonedges in the ISS for the second pairing? With two exceptions they are the
same as before. The vertex n, which was previously identified with f0 + n, is now paired with
f0 + n − 1, and hence has an edge with f0 − 1 which is not true for the first pairing. Similarly,
vertex n − 1 is now identified with f0 + n instead of f0 + n − 1, so it does not have an edge
with f0 − 1, which it did in the first identification scheme. The nonedge pair {n − 1, f0 − 1}

lies in the last group. Since there is no bistellar move corresponding to {n, f0 − 1} (which
would have been in the next to last group), a different bistellar move is required to get an
edge between vertex n and f0. Otherwise, we use exactly the same algorithm as above. We
connect the vertices n − 1 and f0 − 1 in the last bistellar move using A = {n − 1, f0 − 1} and
B = { f0, f0 + 1, f0 + 3, . . . , f0 + n − 2, f0 + n − 1} = { f0, 1, 3, . . . , n − 2, n}. �

Remark 4.2. The same argument as in [10, Theorem 4.7] shows that for a fixed Sk-bundle over
S1 any ISS which minimizes f0 and f1 has the minimum number of faces in every dimension
over all triangulations of the bundle.

Since the f -vector of a 4-manifold is completely determined by g1 and g2, the above theorem
immediately gives a complete list of all possible f -vectors of the nonorientable S3-bundle over
S1.

Theorem 4.3. The following are equivalent.

(1) (g0, g1, g2) is the g-vector of a triangulation of the nonorientable S3-bundle over S1.

(2) g0 = 1, g1 ≥ 6, 15 ≤ g2 ≤

(
g1+1

2

)
.
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