4 research outputs found

    Multiple message broadcasting and gossiping in the dynamically orientable graphs

    Get PDF
    This research investigates the problems of gossiping and multiple message broadcasting in dynamically orientable graphs of different network topologies. These are new problems never attempted before. Dynamically orientable graphs and six different network topologies are considered: paths, cycles, stars, binary trees, complete trees and two-dimensional grids. Information dissemination in graphs that are dynamically orientable requires that number of messages sent in each direction along an edge be balanced and therefore necessitates a different approach in gossiping and multiple message broadcasting.;The obvious upper bound for gossiping and multiple message broadcasting in dynamically orientable graphs is twice the best known time for gossiping and multiple message broadcasting in classical graphs. This is obtained by inserting an additional time step t\u27 after each time step t in the classical graph algorithm in which all calls of time step t are repeated with messages moving along the same edges but in the opposite direction to reset the bias of these edges. Finding better bounds for gossiping and multiple message broadcasting in dynamically orientable graphs is the goal of this research.;For each network topology an algorithm is proposed to perform gossiping and multiple message broadcasting. For some network topologies proposed algorithms for dynamically orientable graphs achieved the same upper bound as it is known for classical graphs, for example, gossiping in dynamically orientable grid graphs. In some cases the best time is the twice the best known time for gossiping and multiple message broadcasting in classical graphs, for example, gossiping in dynamically orientable star graphs. In other cases, good time bounds are achieved that are very close to the upper bounds in classical graphs, for example, multiple message broadcasting in dynamically orientable grid graphs. Multiple message broadcasting in dynamically orientable cycle graphs is also a good example of close upper bounds. As number of messages increases bounds become very close to each other

    Broadcasting in highly connected graphs

    Get PDF
    Throughout history, spreading information has been an important task. With computer networks expanding, fast and reliable dissemination of messages became a problem of interest for computer scientists. Broadcasting is one category of information dissemination that transmits a message from a single originator to all members of the network. In the past five decades the problem has been studied by many researchers and all have come to demonstrate that despite its easy definition, the problem of broadcasting does not have trivial properties and symmetries. For general graphs, and even for some very restricted classes of graphs, the question of finding the broadcast time and scheme remains NP-hard. This work uses graph theoretical concepts to explore mathematical bounds on how fast information can be broadcast in a network. The connectivity of a graph is a measure to assess how separable the graph is, or in other words how many machines in a network will have to fail to disrupt communication between all machines in the network. We initiate the study of finding upper bounds on broadcast time b(G) in highly connected graphs. In particular, we give upper bounds on b(G) for k-connected graphs and graphs with a large minimum degree. We explore 2-connected (biconnected) graphs and broadcasting in them. Using Whitney's open ear decomposition in an inductive proof we propose broadcast schemes that achieve an upper bound of ceil(n/2) for classical broadcasting as well as similar bounds for multiple originators. Exploring further, we use a matching-based approach to prove an upper bound of ceil(log(k)) + ceil(n/k) - 1 for all k-connected graphs. For many infinite families of graphs, these bounds are tight. Discussion of broadcasting in highly connected graphs leads to an exploration of dependence between the minimum degree in the graph and the broadcast time of the latter. By using similar techniques and arguments we show that if all vertices of the graph are neighboring linear numbers of vertices, then information dissemination in the graph can be achieved in ceil(log(n)) + C time. To the best of our knowledge, the bounds presented in our work are a novelty. Methods and questions proposed in this thesis open new pathways for research in broadcasting

    Problems Related to Classical and Universal List Broadcasting

    Get PDF
    Broadcasting is a fundamental problem in the information dissemination area. In classical broadcasting, a message must be sent from one network member to all other members as rapidly as feasible. Although it has been demonstrated that this problem is NP-Hard for arbitrary graphs, it has several applications in various fields. As a result, the universal lists model, replicating real-world restrictions like the memory limits of nodes in large networks, is introduced as a branch of this problem in the literature. In the universal lists model, each node is equipped with a fixed list and has to follow the list regardless of the originator. In this study, we focus on both classical and universal lists broadcasting. Classical broadcasting is solvable for a few families of networks, such as trees, unicyclic graphs, tree of cycles, and tree of cliques. In this study, we begin by presenting an optimal algorithm that finds the broadcast time of any vertex in a Fully Connected Tree (FCT_n) in O(|V | log log n) time. An FCT_n is formed by attaching arbitrary trees to vertices of a complete graph of size n where |V| is the total number of vertices in the graph. Then, we replace the complete graph with a Hypercube H_k and propose a new heuristic for the Hypercube of Trees (HT_k). Not only does this heuristic have the same approximation ratio as the best-known algorithm, but our numerical results also show its superiority in most experiments. Our heuristic is able to outperform the current upper bound in up to 90% of the situations, resulting in an average speedup of 30%. Most importantly, our results illustrate that it can maintain its performance even if the network size grows, making the proposed heuristic practically useful. Afterward, we focus on broadcasting with universal lists, in which once a vertex is informed, it must follow its corresponding list, regardless of the originator and the neighbor from which it received the message. The problem of broadcasting with universal lists could be categorized into two sub-models: non-adaptive and adaptive. In the latter model, a sender will skip the vertices on its list from which it has received the message, while those vertices will not be skipped in the first model. In this study, we will present another sub-model called fully adaptive. Not only does this model benefit from a significantly better space complexity compared to the classical model, but, as will be proved, it is faster than the two other sub-models. Since the suggested model fits real-world network architectures, we will design optimal broadcast algorithms for well-known interconnection networks such as trees, grids, and cube-connected cycles. We also present an upper bound for tori under the same model. Then we focus on designing broadcast graphs (bg)’s under this model. A bg is a graph with minimum possible broadcast time from any originator. Additionally, a minimum broadcast graph (mbg) is a bg with the minimum possible number of edges. We propose mbg’s on n vertices for n ≤ 10 and sparse bg’s for 11 ≤ n ≤ 14 under the fully-adaptive model. Afterward, we introduce the first infinite families of bg’s under this model, and we prove that hypercubes are mbg under this model. Later, we establish the optimal broadcast time of k−ary trees and binomial trees under the nonadaptive model and provide an upper bound for complete bipartite graphs. We also improved a general upper bound for trees under the same model. We then suggest several general upper bounds for the universal lists by comparing them with the messy broadcasting model. Finally, we propose the first heuristic for this problem, namely HUB-GA: a Heuristic for Universal lists Broadcasting with Genetic Algorithm. We undertake various numerical experiments on frequently used interconnection networks in the literature, graphs with clique-like structures, and synthetic instances in order to cover many possibilities of industrial topologies. We also compare our results with state-of-the-art methods for classical broadcasting, which is proved to be the fastest model among all. Although the universal list model utilizes less memory than the classical model, our algorithm finds the same broadcast time as the classical model in diverse situations
    corecore