53 research outputs found

    Unsatisfiable Linear CNF Formulas Are Large and Complex

    Get PDF
    We call a CNF formula linear if any two clauses have at most one variable in common. We show that there exist unsatisfiable linear k-CNF formulas with at most 4k^2 4^k clauses, and on the other hand, any linear k-CNF formula with at most 4^k/(8e^2k^2) clauses is satisfiable. The upper bound uses probabilistic means, and we have no explicit construction coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a more complex structure than general (non-linear) formulas: First, any treelike resolution refutation of any unsatisfiable linear k-CNF formula has size at least 2^(2^(k/2-1))$. This implies that small unsatisfiable linear k-CNF formulas are hard instances for Davis-Putnam style splitting algorithms. Second, if we require that the formula F have a strict resolution tree, i.e. every clause of F is used only once in the resolution tree, then we need at least a^a^...^a clauses, where a is approximately 2 and the height of this tower is roughly k.Comment: 12 pages plus a two-page appendix; corrected an inconsistency between title of the paper and title of the arxiv submissio

    On variables with few occurrences in conjunctive normal forms

    Full text link
    We consider the question of the existence of variables with few occurrences in boolean conjunctive normal forms (clause-sets). Let mvd(F) for a clause-set F denote the minimal variable-degree, the minimum of the number of occurrences of variables. Our main result is an upper bound mvd(F) <= nM(surp(F)) <= surp(F) + 1 + log_2(surp(F)) for lean clause-sets F in dependency on the surplus surp(F). - Lean clause-sets, defined as having no non-trivial autarkies, generalise minimally unsatisfiable clause-sets. - For the surplus we have surp(F) <= delta(F) = c(F) - n(F), using the deficiency delta(F) of clause-sets, the difference between the number of clauses and the number of variables. - nM(k) is the k-th "non-Mersenne" number, skipping in the sequence of natural numbers all numbers of the form 2^n - 1. We conjecture that this bound is nearly precise for minimally unsatisfiable clause-sets. As an application of the upper bound we obtain that (arbitrary!) clause-sets F with mvd(F) > nM(surp(F)) must have a non-trivial autarky (so clauses can be removed satisfiability-equivalently by an assignment satisfying some clauses and not touching the other clauses). It is open whether such an autarky can be found in polynomial time. As a future application we discuss the classification of minimally unsatisfiable clause-sets depending on the deficiency.Comment: 14 pages. Revision contains more explanations, and more information regarding the sharpness of the boun

    A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications

    Full text link
    A pair of unit clauses is called conflicting if it is of the form (x)(x), (xˉ)(\bar{x}). A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed that for each UCF CNF formula with mm clauses we can simultaneously satisfy at least \pp m clauses, where \pp =(\sqrt{5}-1)/2. We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula FF with mm clauses we can find, in polynomial time, a subformula F′F' with m′m' clauses such that we can simultaneously satisfy at least \pp m+(1-\pp)m'+(2-3\pp)n"/2 clauses (in FF), where n"n" is the number of variables in FF which are not in F′F'. We consider two parameterized versions of MAX-SAT, where the parameter is the number of satisfied clauses above the bounds m/2m/2 and m(5−1)/2m(\sqrt{5}-1)/2. The former bound is tight for general formulas, and the later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31, 1999) showed that every instance of the first parameterized problem can be transformed, in polynomial time, into an equivalent one with at most 6k+36k+3 variables and 10k10k clauses. We improve this to 4k4k variables and (25+4)k(2\sqrt{5}+4)k clauses. Mahajan and Raman conjectured that the second parameterized problem is fixed-parameter tractable (FPT). We show that the problem is indeed FPT by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most (7+35)k(7+3\sqrt{5})k variables. Our results are obtained using our improvement of the Lieberherr-Specker bound above
    • …
    corecore