35,432 research outputs found

    On the design of an ECOC-compliant genetic algorithm

    Get PDF
    Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches

    Design of Non-Binary Quasi-Cyclic LDPC Codes by ACE Optimization

    Full text link
    An algorithm for constructing Tanner graphs of non-binary irregular quasi-cyclic LDPC codes is introduced. It employs a new method for selection of edge labels allowing control over the code's non-binary ACE spectrum and resulting in low error-floor. The efficiency of the algorithm is demonstrated by generating good codes of short to moderate length over small fields, outperforming codes generated by the known methods.Comment: Accepted to 2013 IEEE Information Theory Worksho

    Minimal qudit code for a qubit in the phase-damping channel

    Full text link
    Using the stabilizer formalism we construct the minimal code into a D-dimensional Hilbert space (qudit) to protect a qubit against phase damping. The effectiveness of this code is then studied by means of input-output fidelity.Comment: 9 pages, 3 figures. REVTe

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200
    corecore