3,641 research outputs found

    On Minimal Valid Inequalities for Mixed Integer Conic Programs

    Full text link
    We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull. We study the properties of K-minimal inequalities by establishing algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically defined class of K- sublinear inequalities. We establish a close connection between K-sublinear inequalities and the support functions of sets with a particular structure. This connection results in practical ways of showing that a given inequality is K-sublinear and K-minimal. Our framework generalizes some of the results from the mixed integer linear case. It is well known that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily recovered by our analysis. Whenever possible we highlight the connections to the existing literature. However, our study unveils that such a cut generating function view treating the data associated with each individual variable independently is not possible in the case of general cones other than nonnegative orthant, even when the cone involved is the Lorentz cone

    The structure of the infinite models in integer programming

    Get PDF
    The infinite models in integer programming can be described as the convex hull of some points or as the intersection of halfspaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for corner polyhedra. One consequence is that nonnegative, continuous valid functions suffice to describe corner polyhedra (with or without rational data)

    Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. I. The One-Dimensional Case

    Full text link
    We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson's infinite group problem that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically for deciding extremality in this important class of minimal valid functions. We also present an extreme function that is a piecewise linear function with some irrational breakpoints, whose extremality follows from a new principle.Comment: 38 pages, 10 figure

    Constrained infinite group relaxations of MIPs

    Get PDF
    Recently minimal and extreme inequalities for continuous group relaxations of general mixed integer sets have been characterized. In this paper, we consider a stronger relaxation of general mixed integer sets by allowing constraints, such as bounds, on the free integer variables in the continuous group relaxation. We generalize a number of results for the continuous infinite group relaxation to this stronger relaxation and characterize the extreme inequalities when there are two integer variables.

    Finding Minimal Cost Herbrand Models with Branch-Cut-and-Price

    Full text link
    Given (1) a set of clauses TT in some first-order language L\cal L and (2) a cost function c:BL→R+c : B_{{\cal L}} \rightarrow \mathbb{R}_{+}, mapping each ground atom in the Herbrand base BLB_{{\cal L}} to a non-negative real, then the problem of finding a minimal cost Herbrand model is to either find a Herbrand model I\cal I of TT which is guaranteed to minimise the sum of the costs of true ground atoms, or establish that there is no Herbrand model for TT. A branch-cut-and-price integer programming (IP) approach to solving this problem is presented. Since the number of ground instantiations of clauses and the size of the Herbrand base are both infinite in general, we add the corresponding IP constraints and IP variables `on the fly' via `cutting' and `pricing' respectively. In the special case of a finite Herbrand base we show that adding all IP variables and constraints from the outset can be advantageous, showing that a challenging Markov logic network MAP problem can be solved in this way if encoded appropriately

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

    Full text link
    We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory-Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing the hypothesis regarding rational breakpoints. We then separate the three notions using discontinuous examples.Comment: 18 pages, 2 figure
    • …
    corecore