109,725 research outputs found

    Self-force on extreme mass ratio inspirals via curved spacetime effective field theory

    Full text link
    In this series we construct an effective field theory (EFT) in curved spacetime to study gravitational radiation and backreaction effects. We begin in this paper with a derivation of the self-force on a compact object moving in the background spacetime of a supermassive black hole. The EFT approach utilizes the disparity between two length scales, which in this problem are the size of the compact object and the radius of curvature of the background spacetime, to treat the orbital dynamics of the compact object, described as an effective point particle, separately from its tidal deformations. Ultraviolet divergences are regularized using Hadamard's {\it partie finie} to isolate the non-local finite part from the quasi-local divergent part. The latter is constructed from a momentum space representation for the graviton retarded propagator and is evaluated using dimensional regularization in which only logarithmic divergences are relevant for renormalizing the parameters of the theory. As a first important application of this framework we explicitly derive the first order self-force given by Mino, Sasaki, Tanaka, Quinn and Wald. Going beyond the point particle approximation, to account for the finite size of the object, we demonstrate that for extreme mass ratio inspirals the motion of a compact object is affected by tidally induced moments at O(ϵ4)O(\epsilon^4), in the form of an Effacement Principle. The relatively large radius-to-mass ratio of a white dwarf star allows for these effects to be enhanced until the white dwarf becomes tidally disrupted, a potentially O(ϵ2)O(\epsilon^2) process, or plunges into the supermassive black hole. This work provides a new foundation for further exploration of higher order self force corrections, gravitational radiation and spinning compact objects.Comment: 22 pages, 5 figures; references added, revised Appendices B & C, corrected typos, revisions throughout for clarification particularly in Section IV.B; submitted to PR

    Kirigami Actuators

    Full text link
    Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single, non-propagating crack in a sheet we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments at centimeter scale objects and molecular dynamics simulations of graphene and MoS2_{2} nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.Comment: Soft Matter, 201

    Universal bounds on current fluctuations

    Full text link
    For current fluctuations in non-equilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a new general class of constraints for nonequilibrium systems.Comment: 19 pages, 13 figure
    • …
    corecore