6,212 research outputs found

    Stored state asynchronous sequential circuits

    Get PDF
    Journal ArticleA method is described for realizing asynchronous sequential circuits in a manner analogous to the stored state method for synchronous sequential circuits. the method simplifies the process of constructing asynchronous sequential circuits, allows utilization of existing MSI parts, and avoids the necessity for concern with races or hazards

    Time4: Time for SDN

    Full text link
    With the rise of Software Defined Networks (SDN), there is growing interest in dynamic and centralized traffic engineering, where decisions about forwarding paths are taken dynamically from a network-wide perspective. Frequent path reconfiguration can significantly improve the network performance, but should be handled with care, so as to minimize disruptions that may occur during network updates. In this paper we introduce Time4, an approach that uses accurate time to coordinate network updates. Time4 is a powerful tool in softwarized environments, that can be used for various network update scenarios. Specifically, we characterize a set of update scenarios called flow swaps, for which Time4 is the optimal update approach, yielding less packet loss than existing update approaches. We define the lossless flow allocation problem, and formally show that in environments with frequent path allocation, scenarios that require simultaneous changes at multiple network devices are inevitable. We present the design, implementation, and evaluation of a Time4-enabled OpenFlow prototype. The prototype is publicly available as open source. Our work includes an extension to the OpenFlow protocol that has been adopted by the Open Networking Foundation (ONF), and is now included in OpenFlow 1.5. Our experimental results show the significant advantages of Time4 compared to other network update approaches, and demonstrate an SDN use case that is infeasible without Time4.Comment: This report is an extended version of "Software Defined Networks: It's About Time", which was accepted to IEEE INFOCOM 2016. A preliminary version of this report was published in arXiv in May, 201

    Integrated Formal Analysis of Timed-Triggered Ethernet

    Get PDF
    We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker

    Micrographia of the twenty-first century: from camera obscura to 4D microscopy

    Get PDF
    In this paper, the evolutionary and revolutionary developments of microscopic imaging are overviewed with a perspective on origins. From Alhazen’s camera obscura, to Hooke and van Leeuwenhoek’s two-dimensional optical micrography, and on to three- and four-dimensional (4D) electron microscopy, these developments over a millennium have transformed humans’ scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the visible shadows of candles at the centimetre and second scales, and ending with invisible atoms with space and time dimensions of sub-nanometre and femtosecond. With these advances it has become possible to determine the structures of matter and to observe their elementary dynamics as they unfold in real time. Such observations provide the means for visualizing materials behaviour and biological function, with the aim of understanding emergent phenomena in complex systems

    Flight Safety Assessment and Management.

    Full text link
    This dissertation develops a Flight Safety Assessment and Management (FSAM) system to mitigate aircraft loss of control risk. FSAM enables switching between the pilot/nominal autopilot system and a complex flight control system that can potentially recover from high risk situations but can be hard to certify. FSAM monitors flight conditions for high risk situations and selects the appropriate control authority to prevent or recover from loss of control. The pilot/nominal autopilot system is overridden only when necessary to avoid loss of control. FSAM development is pursued using two approaches. First, finite state machines are manually prescribed to manage control mode switching. Constructing finite state machines for FSAM requires careful consideration of possible exception events, but provides a computationally-tractable and verifiable means of realizing FSAM. The second approach poses FSAM as an uncertain reasoning based decision theoretic problem using Markov Decision Processes (MDP), offering a less tedious knowledge engineering process at the cost of computational overhead. Traditional and constrained MDP formulations are presented. Sparse sampling approaches are also explored to obtain suboptimal solutions to FSAM MDPs. MDPs for takeoff and icing-related loss of control events are developed and evaluated. Finally, this dissertation applies verification techniques to ensure that finite state machine or MDP policies satisfy system requirements. Counterexamples obtained from verification techniques aid in FSAM refinement. Real world aviation accidents are used as case studies to evaluate FSAM formulations. This thesis contributes decision making and verification frameworks to realize flight safety assessment and management capabilities. Novel flight envelopes and state abstractions are prescribed to aid decision making.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133348/1/swee_1.pd
    corecore