199 research outputs found

    Classification algorithms for Big Data with applications in the urban security domain

    Get PDF
    A classification algorithm is a versatile tool, that can serve as a predictor for the future or as an analytical tool to understand the past. Several obstacles prevent classification from scaling to a large Volume, Velocity, Variety or Value. The aim of this thesis is to scale distributed classification algorithms beyond current limits, assess the state-of-practice of Big Data machine learning frameworks and validate the effectiveness of a data science process in improving urban safety. We found in massive datasets with a number of large-domain categorical features a difficult challenge for existing classification algorithms. We propose associative classification as a possible answer, and develop several novel techniques to distribute the training of an associative classifier among parallel workers and improve the final quality of the model. The experiments, run on a real large-scale dataset with more than 4 billion records, confirmed the quality of the approach. To assess the state-of-practice of Big Data machine learning frameworks and streamline the process of integration and fine-tuning of the building blocks, we developed a generic, self-tuning tool to extract knowledge from network traffic measurements. The result is a system that offers human-readable models of the data with minimal user intervention, validated by experiments on large collections of real-world passive network measurements. A good portion of this dissertation is dedicated to the study of a data science process to improve urban safety. First, we shed some light on the feasibility of a system to monitor social messages from a city for emergency relief. We then propose a methodology to mine temporal patterns in social issues, like crimes. Finally, we propose a system to integrate the findings of Data Science on the citizenry’s perception of safety and communicate its results to decision makers in a timely manner. We applied and tested the system in a real Smart City scenario, set in Turin, Italy

    Scaling associative classification for very large datasets

    Get PDF
    Supervised learning algorithms are nowadays successfully scaling up to datasets that are very large in volume, leveraging the potential of in-memory cluster-computing Big Data frameworks. Still, massive datasets with a number of large-domain categorical features are a difficult challenge for any classifier. Most off-the-shelf solutions cannot cope with this problem. In this work we introduce DAC, a Distributed Associative Classifier. DAC exploits ensemble learning to distribute the training of an associative classifier among parallel workers and improve the final quality of the model. Furthermore, it adopts several novel techniques to reach high scalability without sacrificing quality, among which a preventive pruning of classification rules in the extraction phase based on Gini impurity. We ran experiments on Apache Spark, on a real large-scale dataset with more than 4 billion records and 800 million distinct categories. The results showed that DAC improves on a state-of-the-art solution in both prediction quality and execution time. Since the generated model is human-readable, it can not only classify new records, but also allow understanding both the logic behind the prediction and the properties of the model, becoming a useful aid for decision makers

    A Fast Minimal Infrequent Itemset Mining Algorithm

    Get PDF
    A novel fast algorithm for finding quasi identifiers in large datasets is presented. Performance measurements on a broad range of datasets demonstrate substantial reductions in run-time relative to the state of the art and the scalability of the algorithm to realistically-sized datasets up to several million records
    • …
    corecore