336 research outputs found

    Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications

    Full text link
    Little research has been done to reliably model millimeter wave (mmWave) path loss in rural macrocell settings, yet, models have been hastily adopted without substantial empirical evidence. This paper studies past rural macrocell (RMa) path loss models and exposes concerns with the current 3rd Generation Partnership Project (3GPP) TR 38.900 (Release 14) RMa path loss models adopted from the International Telecommunications Union - Radiocommunications (ITU-R) Sector. This paper shows how the 3GPP RMa large-scale path loss models were derived for frequencies below 6 GHz, yet they are being asserted for use up to 30 GHz, even though there has not been sufficient work or published data to support their validity at frequencies above 6 GHz or in the mmWave bands. We present the background of the 3GPP RMa path loss models and their use of odd correction factors not suitable for rural scenarios, and show that the multi-frequency close-in free space reference distance (CI) path loss model is more accurate and reliable than current 3GPP and ITU-R RMa models. Using field data and simulations, we introduce a new close-in free space reference distance with height dependent path loss exponent model (CIH), that predicts rural macrocell path loss using an effective path loss exponent that is a function of base station antenna height. This work shows the CI and CIH models can be used from 500 MHz to 100 GHz for rural mmWave coverage and interference analysis, without any discontinuity at 6 GHz as exists in today's 3GPP and ITU-R RMa models.Comment: To be published in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 201

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    In-Building Capacity Enhancement using Small Cells in Mobile Networks: An Overview

    Get PDF
    In this paper, we give an overview of the state-of-the-art research studies to present the potential of small cells to address the high capacity demands of in-building users in mobile networks. In doing so, we discuss relevant theoretical backgrounds and carry out performance evaluations of key enabling technologies along with three major directions toward improving the network capacity, including spectrum accessibility, Spectral Efficiency (SE) improvement, and network densification. For the spectrum accessibility, numerous types of Small Cell Base Station (SBS) architectures of a Mobile Network Operator (MNO) are evaluated. For the SE improvement, cognitive radio techniques are evaluated for the Dynamic Spectrum Sharing (DSS) among multiple MNOs in a country. For the network densification, the spectrum reuse is evaluated at both intra-and inter-building levels for a given Co-Channel Interference (CCI) constraint. It is shown that multi-band multi-transceiver enabled small cells operating in the high-frequency millimeter-wave licensed or unlicensed spectrum to realize DSS techniques by exploiting SBS architectures for the spectrum accessibility, a hybrid interweave-underlay spectrum access in Cognitive Radio Networks for the spectral efficiency improvement, and both vertical and horizontal spectrum reuse in small cells deployed densely within buildings for the network densification can address high capacity demand in indoor mobile networks

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465
    • …
    corecore