4 research outputs found

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    REACT-ION: A model-based runtime environment for situation-aware adaptations

    Full text link
    Trends such as the Internet of Things lead to a growing number of networked devices and to a variety of communication systems. Adding self-adaptive capabilities to these communication systems is one approach to reducing administrative effort and coping with changing execution contexts. Existing frameworks can help reducing development effort but are neither tailored toward the use in communication systems nor easily usable without knowledge in self-adaptive systems development. Accordingly, in previous work, we proposed REACT, a reusable, model-based runtime environment to complement communication systems with adaptive behavior. REACT addresses heterogeneity and distribution aspects of such systems and reduces development effort. In this article, we propose REACT-ION—an extension of REACT for situation awareness. REACT-ION offers a context management module that is able to acquire, store, disseminate, and reason on context data. The context management module is the basis for (i) proactive adaptation with REACT-ION and (ii) self-improvement of the underlying feedback loop. REACT-ION can be used to optimize adaptation decisions at runtime based on the current situation. Therefore, it can cope with uncertainty and situations that were not foreseeable at design time. We show and evaluate in two case studies how REACT-ION’s situation awareness enables proactive adaptation and self-improvement

    Middleware for Constructing Decentralized Control in Self-Organizing Systems

    No full text
    corecore