18,874 research outputs found

    Video content analysis for intelligent forensics

    Get PDF
    The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild

    When Do Luxury Cars Hit the Road? Findings by A Big Data Approach

    Full text link
    In this paper, we focus on studying the appearing time of different kinds of cars on the road. This information will enable us to infer the life style of the car owners. The results can further be used to guide marketing towards car owners. Conventionally, this kind of study is carried out by sending out questionnaires, which is limited in scale and diversity. To solve this problem, we propose a fully automatic method to carry out this study. Our study is based on publicly available surveillance camera data. To make the results reliable, we only use the high resolution cameras (i.e. resolution greater than 1280×7201280 \times 720). Images from the public cameras are downloaded every minute. After obtaining 50,000 images, we apply faster R-CNN (region-based convoluntional neural network) to detect the cars in the downloaded images and a fine-tuned VGG16 model is used to recognize the car makes. Based on the recognition results, we present a data-driven analysis on the relationship between car makes and their appearing times, with implications on lifestyles

    Vehicle make and model recognition using bag of expressions

    Get PDF
    This article belongs to the Section Intelligent SensorsVehicle make and model recognition (VMMR) is a key task for automated vehicular surveillance (AVS) and various intelligent transport system (ITS) applications. In this paper, we propose and study the suitability of the bag of expressions (BoE) approach for VMMR-based applications. The method includes neighborhood information in addition to visual words. BoE improves the existing power of a bag of words (BOW) approach, including occlusion handling, scale invariance and view independence. The proposed approach extracts features using a combination of different keypoint detectors and a Histogram of Oriented Gradients (HOG) descriptor. An optimized dictionary of expressions is formed using visual words acquired through k-means clustering. The histogram of expressions is created by computing the occurrences of each expression in the image. For classification, multiclass linear support vector machines (SVM) are trained over the BoE-based features representation. The approach has been evaluated by applying cross-validation tests on the publicly available National Taiwan Ocean University-Make and Model Recognition (NTOU-MMR) dataset, and experimental results show that it outperforms recent approaches for VMMR. With multiclass linear SVM classification, promising average accuracy and processing speed are obtained using a combination of keypoint detectors with HOG-based BoE description, making it applicable to real-time VMMR systems.Muhammad Haroon Yousaf received funding from the Higher Education Commission, Pakistan for Swarm Robotics Lab under the National Centre for Robotics and Automation (NCRA). The authors also acknowledge support from the Directorate of ASR& TD, University of Engineering and Technology Taxila, Pakistan

    Computational linguistics for theory and practice

    Get PDF

    An empirical study of inter-concept similarities in multimedia ontologies

    Get PDF
    Generic concept detection has been a widely studied topic in recent research on multimedia analysis and retrieval, but the issue of how to exploit the structure of a multimedia ontology as well as different inter-concept relations, has not received similar attention. In this paper, we present results from our empirical analysis of different types of similarity among semantic concepts in two multimedia ontologies, LSCOM-Lite and CDVP-206. The results show promise that the proposed methods may be helpful in providing insight into the existing inter-concept relations within an ontology and selecting the most facilitating set of concepts and hierarchical relations. Such an analysis as this can be utilized in various tasks such as building more reliable concept detectors and designing large-scale ontologies
    corecore