41,445 research outputs found
Incoherent dynamics in neutron-matter interaction
Coherent and incoherent neutron-matter interaction is studied inside a
recently introduced approach to subdynamics of a macrosystem. The equation
describing the interaction is of the Lindblad type and using the Fermi
pseudopotential we show that the commutator term is an optical potential
leading to well-known relations in neutron optics. The other terms, usually
ignored in optical descriptions and linked to the dynamic structure function of
the medium, give an incoherent contribution to the dynamics, which keeps
diffuse scattering and attenuation of the coherent beam into account, thus
warranting fulfilment of the optical theorem. The relevance of this analysis to
experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.
Analysis and design optimization of an integrated micropump-micromixer operated for bio-MEMS applications
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A generic microfluidic system composed by two single chamber valveless micropumps connected
to a simple T-type channel intersection is examined numerically. The characteristics of a feasible valveless
micropump have been used in the design, where efficient mixing is produced due to the pulsating flow
generated by the micropumps. The advantages of using time pulsing inlet flows for enhancing mixing in
channels have been harnessed through the activation of intrinsic characteristics of the pumps required to
achieve the periodic flows. A parametric study is carried out on this microfluidic system using Computational Fluids Dynamics (CFD)on a design space defined by a Design-of-Experiments (DOE) technique. The frequency f and the phase difference f of the periodic fluid velocities (operation parameters) and the angle q formed by the inlet channels at the intersection (geometric parameter) are used as design parameters, whereas mixing quality, pressure drop and maximum shear strain rate in the channel are the performance parameters. The study identifies design features for which the pressure drop and shear strain are reduced whereas the mixing quality is increased. The proposed microfluidic system achieves high mixing quality with performance parameters that enable manipulation of biological fluids in microchannels
Master-equations for the study of decoherence
Different structures of master-equation used for the description of
decoherence of a microsystem interacting through collisions with a surrounding
environment are considered and compared. These results are connected to the
general expression of the generator of a quantum dynamical semigroup in
presence of translation invariance recently found by Holevo.Comment: 10 pages, latex, no figures, to appear in Int. J. Theor. Phy
- …
