19,627 research outputs found

    Scanning probe microscopy imaging of metallic nanocontacts

    Full text link
    We show scanning probe microscopy measurements of metallic nanocontacts between controlled electromigration cycles. The nanowires used for the thinning process are fabricated by shadow evaporation. The highest resolution obtained using scanning force microscopy is about 3 nm. During the first few electromigration cycles the overall slit structure of the nanocontact is formed. The slit first passes along grain boundaries and then at a later stage vertically splits grains in the course of consuming them. We find that first the whole wire is heated and later during the thinning process as the slit forms the current runs over several smaller contacts which needs less power.Comment: 4 pages, 4 figure

    Domain adaptive segmentation in volume electron microscopy imaging

    Get PDF
    In the last years, automated segmentation has become a necessary tool for volume electron microscopy (EM) imaging. So far, the best performing techniques have been largely based on fully supervised encoder-decoder CNNs, requiring a substantial amount of annotated images. Domain Adaptation (DA) aims to alleviate the annotation burden by 'adapting' the networks trained on existing groundtruth data (source domain) to work on a different (target) domain with as little additional annotation as possible. Most DA research is focused on the classification task, whereas volume EM segmentation remains rather unexplored. In this work, we extend recently proposed classification DA techniques to an encoder-decoder layout and propose a novel method that adds a reconstruction decoder to the classical encoder-decoder segmentation in order to align source and target encoder features. The method has been validated on the task of segmenting mitochondria in EM volumes. We have performed DA from brain EM images to HeLa cells and from isotropic FIB/SEM volumes to anisotropic TEM volumes. In all cases, the proposed method has outperformed the extended classification DA techniques and the finetuning baseline. An implementation of our work can be found on https://github.com/JorisRoels/domain-adaptive-segmentation

    Extremely sharp carbon nanocone probes for atomic force microscopy imaging

    Get PDF
    A simple and reliable catalyst patterning technique combined with electric-field-guided growth is utilized to synthesize a sharp and high-aspect-ratio carbon nanocone probe on a tipless cantilever for atomic force microscopy. A single carbon nanodot produced by an electron-beam-induced deposition serves as a convenient chemical etch mask for catalyst patterning, thus eliminating the need for complicated, resist-based, electron-beam lithography for a nanoprobe fabrication. A gradual, sputtering-induced size reduction and eventual removal of the catalyst particle at the probe tip during electric-field-guided growth creates a sharp probe with a tip radius of only a few nanometers. These fabrication processes are amenable for the wafer-scale synthesis of multiple probes. High resolution imaging of three-dimensional features and deep trenches, and mechanical durability enabling continuous operation for many hours without noticeable image deterioration have been demonstrated

    Velocity-Dependent Forces in Atomic Force Microscopy Imaging of Lipid Films

    Get PDF
    We have imaged adsorbed fluid lipid bilayers by atomic force microscopy. The patches were formed by rupture of phospholipid vesicles onto magnesium fluoride. We show that the membrane patches are fluid but can be stably imaged at scan rates higher than 6 p d s . At lower scan rates the tip penetrates through the layer. The penetrating tip does not destroy the fluid patches, and the previous image can be restored after increasing the scanning velocity. The dynamic forces that possibly explain the effect are discussed

    Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope

    Get PDF
    We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel’s floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 mm FWHM). In our experiments, our established resolution was 1.0 mm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker

    The stoichiometry of P2X2/6 receptor heteromers depends on relative subunit expression levels

    Get PDF
    Fast synaptic transmission involves the operation of ionotropic receptors, which are often composed of at least two types of subunit. We have developed a method, based on atomic force microscopy imaging to determine the stoichiometry and subunit arrangement within ionotropic receptors. We showed recently that the P2X(2) receptor for ATP is expressed as a trimer but that the P2X(6) subunit is unable to oligomerize. In this study we addressed the subunit stoichiometry of heteromers containing both P2X(2) and P2X(6) subunits. We transfected tsA 201 cells with both P2X(2) and P2X(6) subunits, bearing different epitope tags. We manipulated the transfection conditions so that either P2X(2) or P2X(6) was the predominant subunit expressed. By atomic force microscopy imaging of isolated receptors decorated with antiepitope antibodies, we demonstrate that when expression of the P2X(2) subunit predominates, the receptors contain primarily 2 x P2X(2) subunits and 1 x P2X(6) subunit. In contrast, when the P2X(6) subunit predominates, the subunit stoichiometry of the receptors is reversed. Our results show that the composition of P2X receptor heteromers is plastic and dependent on the relative subunit expression levels. We suggest that this property of receptor assembly might introduce an additional layer of subtlety into P2X receptor signaling
    • …
    corecore