10,076 research outputs found

    New Internal Stress Driven on-Chip Micromachines for Extracting Mechanical Properties of Thin Films

    Get PDF
    A new concept of micromachines has been developed for measuring the mechanical properties of thin metallic films. The actuator is a beam undergoing large internal stresses built up during the deposition process. Al thin films are deposited partly on the actuator beam and on the substrate. By etching the structure, the actuator contracts and pulls the Al film. Full stress strain curves can be generated by designing a set of micromachines with various actuator lengths. In the present study, the displacements have been measured by scanning electronic microscopy. The stress is derived from simple continuum mechanics relationships. The tensile properties of Al films of various thicknesses have been tested. A marked increase of the strength with decreasing film thickness is observed.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Towards efficient modelling of optical micromanipulation of complex structures

    Get PDF
    Computational methods for electromagnetic and light scattering can be used for the calculation of optical forces and torques. Since typical particles that are optically trapped or manipulated are on the order of the wavelength in size, approximate methods such as geometric optics or Rayleigh scattering are inapplicable, and solution or either the Maxwell equations or the vector Helmholtz equation must be resorted to. Traditionally, such solutions were only feasible for the simplest geometries; modern computational power enable the rapid solution of more general--but still simple--geometries such as axisymmetric, homogeneous, and isotropic scatterers. However, optically-driven micromachines necessarily require more complex geometries, and their computational modelling thus remains in the realm of challenging computational problems. We review our progress towards efficient computational modelling of optical tweezers and micromanipulation, including the trapping and manipulation of complex structures such as optical micromachines. In particular, we consider the exploitation of symmetry in the modelling of such devices.Comment: 5 pages, 4 figure

    High-Performance Shuffle Motor Fabricated by Vertical Trench Isolation Technology

    Get PDF
    Shuffle motors are electrostatic stepper micromotors that employ a built-in mechanical leverage to produce large output forces as well as high resolution displacements. These motors can generally move only over predefined paths that served as driving electrodes. Here, we present the design, modeling and experimental characterization of a novel shuffle motor that moves over an unpatterned, electrically grounded surface. By combining the novel design with an innovative micromachining method based on vertical trench isolation, we have greatly simplified the fabrication of the shuffle motors and significantly improved their overall performance characteristics and reliability. Depending on the propulsion voltage, our motor with external dimensions of 290 μm × 410 mm displays two distinct operational modes with adjustable step sizes varying respectively from 0.6 to 7 nm and from 49 to 62 nm. The prototype was driven up to a cycling frequency of 80 kHz, showing nearly linear dependence of its velocity with frequency and a maximum velocity of 3.6 mm/s. For driving voltages of 55 V, the device had a maximum travel range of ±70 μm and exhibited an output force of 1.7 mN, resulting in the highest force and power densities reported so far for an electrostatic micromotor. After five days of operation, it had traveled a cumulative distance of more than 1.5 km in 34 billion steps without noticeable deterioration in performance.\u

    Tunable sensor response by voltage-control in biomimetic hair flow sensors

    Get PDF
    We present an overview of improvements in detection limit and responsivity of our biomimetic hair flow sensors by electrostatic spring-softening (ESS). Applying a DC-bias voltage to our capacitive flow sensors improves the responsively by up to 80% for flow signals at frequencies below the sensor’s resonance. Application of frequency matched AC-bias voltages allows for tunable filtering and selective gain up to 20 dB. Furthermore, the quality and fidelity of low frequency flow measurements can be improved using a non frequency-matched AC-bias voltage, resulting in a flow detection limit down to 5 mm/s at low (30 Hz) frequencies. The merits and applicability of the three methods are discussed

    Fabrication of micro-structures for optically driven micromachines using two-photon photopolymerization of UV curing resins

    Full text link
    Two-photon photopolymerization of UV curing resins is an attractive method for the fabrication of microscopic transparent objects with size in the tens of micrometers range. We have been using this method to produce three-dimensional structures for optical micromanipulation, in an optical system based on a femtosecond laser. By carefully adjusting the laser power and the exposure time we were able to create micro-objects with well-defined 3D features and with resolution below the diffraction limit of light. We discuss the performance and capabilities of a microfabrication system, with some examples of its products.Comment: 12 pages, 10 figure
    • …
    corecore