55 research outputs found

    Ibeacon based proximity and indoor localization system

    Get PDF
    User location can be leveraged to provide a wide range of services in a variety of indoor locations including retails stores, hospitals, airports, museums and libraries etc. The widescale proliferation of user devices such as smart phones and the interconnectivity among different entities, powered by Internet of Things (IoT), makes user device-based localization a viable approach to provide Location Based Services (LBS). Location based services can be broadly classified into 1) Proximity based services that provides services based on a rough estimate of users distance to any entity, and 2) Indoor localization that locates a user\u27s exact location in the indoor environment rather than a rough estimate of the distance. The primary requirements of these services are higher energy efficiency, localization accuracy, wide reception range, low cost and availability. Technologies such as WiFi, Radio Frequency Identification (RFID) and Ultra Wideband (UWB) have been used to provide both indoor localization and proximity based services. Since these technologies are not primarily intended for LBS, they do not fulfill the aforementioned requirements. Bluetooth Low Energy (BLE) enabled beacons that use Apple\u27s proprietary iBeacon protocol are mainly intended to provide proximity based services. iBeacons satisfy the energy efficiency, wide reception range and availability requirements of LBS. However, iBeacons are prone to noise due to their reliance on Received Signal Strength Indicator (RSSI), which drastically fluctuates in indoor environments due to interference from different obstructions. This limits its proximity detection accuracy. In this thesis, we present an iBeacon based proximity and indoor localization system. We present our two server-based algorithms to improve the proximity detection accuracy by reducing the variation in the RSSI and using the RSSI-estimated distance, rather than the RSSI itself, for proximity classification. Our algorithms Server-side Running Average and Server-side Kalman Filter improves the proximity detection accuracy by 29% and 32% respectively in contrast to Apple\u27s current approach of using moving average of RSSI values for proximity classification. We utilize a server-based approach because of the greater computing power of servers. Furthermore, server-based approach helps reduce the energy consumption of user device. We describe our cloud based architecture for iBeacon based proximity detection. We also use iBeacons for indoor localization. iBeacons are not primarily intended for indoor localization as their reliance on RSSI makes them unsuitable for accurate indoor localization. To improve the localization accuracy, we use Bayesian filtering algorithms such as Particle Filter (PF), Kalman Filter (KF), and Extended Kalman Filter (EKF). We show that by cascading Kalman Filter and Extended Kalman Filter with Particle Filter, the indoor localization accuracy can be improved by 28% and 33.94% respectively when compared with only using PF. The PF, KFPF and PFEKF algorithm on the server side have average localization error of 1.441 meters, 1.0351 meters and 0.9519 meters respectively

    Multiple Model-based Indoor Localization via Bluetooth Low Energy and Inertial Measurement Unit Sensors

    Get PDF
    Ubiquitous presence of smart connected devices coupled with evolution of Artificial Intelligence (AI) within the field of Internet of Things (IoT) have resulted in emergence of innovative ambience awareness concepts such as smart homes and smart cities. In particular, IoT-based indoor localization has gained significant popularity, given the expected widespread implementation of 5G network, to satisfy the ever increasing requirements of Location-based Services (LBS) and Proximity Based Services (PBS). LBSs and PBSs have found several applications under different circumstances such as localization profiling for human resource management; navigation assistant applications in smart buildings/hospitals, and; proximity based advertisement and marketing. The focus of this thesis is, therefore, on design and implementation of efficient and accurate indoor localization processing and learning techniques. In particular, the thesis focuses on the following three positioning frameworks: (i) \textit{Bluetooth Low Energy (BLE)-based Indoor Localization}, which uses the pathloss model to estimate the user's location; (ii) \textit{Inertial Measurement Unit (IMU)-based Indoor Positioning}, where smart phone's 33 axis inertial sensors are utilized to iteratively estimate the headings and steps of the target, and; (iii) \textit{Pattern Recognition-based Indoor Localization}, which uses Deep Neural Networks (DNNs) to estimate the performed actions and find the user's location. With regards to Item (i), the thesis evaluates effects of the orientation of target's phone, Line of Sight (LOS) / Non Line of Sight (NLOS) signal propagation, and presence of obstacles in the environment on the BLE-based distance estimates. Additionally, a fusion framework, combining Particle Filtering with K-Nearest Neighbors (K-NN) algorithm, is proposed and evaluated based on real datasets collected through an implemented LBS platform. With regards to Item (ii), an orientation detection and multiple-modeling framework is proposed to refine Received Signal Strength Indicator (RSSI) fluctuations by compensating negative orientation effects. The proposed data-driven and orientation-free modeling framework provides improved localization results. With regards to Item (iii), the focus is on classifying actions performed by a user using Long Short Term Memory (LSTM) architectures. To address issues related to cumulative error of Pedestrian Dead Reckoning (PDR) solutions, three Online Dynamic Window (ODW) assisted LSTM positioning frameworks are proposed. The first model, uses a Natural Language Processing (NLP)-inspired Dynamic Window (DW) approach, which significantly reduces the computation time required for Real Time Localization Systems (RTLS). The second framework is developed based on a Signal Processing Dynamic Window (SP-DW) approach to further reduce the required processing time of the two stage LSTM based indoor localization. The third model, referred to as the SP-NLP, combines the first two models to further improve the overall achieved accuracy

    Bibliometric analysis, scientometrics and metasynthesis of Internet of Things (IoT) in smart buildings

    Get PDF
    Purpose: The Internet of Things has made the shift to the digital era possible, even though the Architecture, Engineering, and Construction (AEC) sector has not embraced nor integrated it within the core functions compared to other sectors. The need to enhance sustainable construction with the adoption of Internet of Things in this sector cannot be overemphasized. However, the real-world applications of Internet of Things in smart buildings remain relatively unexplored in the AEC sector due to several issues related to deployment and energy-saving potentials. Given these challenges, this paper proposes to identify the present state of development and research in Internet of Things and smart buildings, and identify Internet of Things clusters and applications in smart buildings. Design/methodology/approach: Bibliometric analyses of papers from 2010 to 2023 using the Scopus database and scientometric evaluations using the VosViewer software were undertaken. The proper search keyword was identified by using the phrases “ Internet of Things” and “Smart Building”. A total of 1158 documents in all, written by 3540 different writers, representing 2285 different institutions from 97 different countries were looked at. A metasynthesis was conducted and a system of Internet of Things applications in a smart building is illustrated. Findings: The development of IoT and Smart Buildings is done in two phases: initiation (2010-2012) and development (2013-2023). The IoT clusters comprised internet of things, energy efficiency, intelligent buildings, smart buildings, and automation; while the most commonly used applications were analysed and established. The study also determined the productive journals, documents, authors, and countries. Research limitations/implications: Documents published in the Scopus database from 2010 to 2023 were considered for the bibliometric analysis. Journal articles, conference papers, reviews, books, and book chapters written in English language represent the inclusion criteria, while articles in press, conference reviews, letters, editorials, undefined sources, and all medical and health publications were excluded. Practical implications: The results of this study will be used by construction stakeholders and policymakers to identify key themes and applications in IoT-enabled smart buildings and to guide future research in the policymaking process of asset management. Originality/value: The study utilised bibliometric analysis, scientometrics and metasynthesis to investigate internet of things applications in smart buildings. The study identified internet of things clusters and applications for smart building design and construction. Keywords: Artificial intelligence, bibliometrics, internet of things, network sensors, smart buildings
    • …
    corecore