28 research outputs found

    Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications

    Get PDF
    open access articleThe performance, energy storage capacity, safety, and lifetime of lithium-ion battery cells of different chemistries are very sensitive to operating and environmental temperatures. The cells generate heat by current passing through their internal resistances, and chemical reactions can generate additional, sometimes uncontrollable, heat if the temperature within the cells reaches the trigger temperature. Therefore, a high-performance battery cooling system that maintains cells as close to the ideal temperature as possible is needed to enable the highest possible discharge current rates while still providing a sufficient safety margin. This paper presents a novel design, preliminary development, and results for an inexpensive reusable, liquid-cooled, modular, hexagonal battery module that may be suitable for some mobile and stationary applications that have high charge and or discharge rate requirements. The battery temperature rise was measured experimentally for a six parallel 18650 cylindrical cell demonstrator module over complete discharge cycles at discharge rates of 1C, 2C and 3C. The measured temperature rises at the hottest point in the cells, at the anode terminal, were found to be 6, 17 and 22 °C, respectively. The thermal resistance of the system was estimated to be below 0.2 K/W at a coolant flow rate of 0.001 Kg/s. The proposed liquid cooled module appeared to be an effective solution for maintaining cylindrical Li-ion cells close to their optimum working temperature

    Design, development and thermal analysis of reusable Li-ion battery module for future mobile and stationary applications

    Get PDF
    The performance, energy storage capacity, safety, and lifetime of lithium-ion battery cells of different chemistries are very sensitive to operating and environmental temperatures. The cells generate heat by current passing through their internal resistances, and chemical reactions can generate additional, sometimes uncontrollable, heat if the temperature within the cells reaches the trigger temperature. Therefore, a high-performance battery cooling system that maintains cells as close to the ideal temperature as possible is needed to enable the highest possible discharge current rates while still providing a sufficient safety margin. This paper presents a novel design, preliminary development, and results for an inexpensive reusable, liquid-cooled, modular, hexagonal battery module that may be suitable for some mobile and stationary applications that have high charge and or discharge rate requirements. The battery temperature rise was measured experimentally for a six parallel 18650 cylindrical cell demonstrator module over complete discharge cycles at discharge rates of 1C, 2C and 3C. The measured temperature rises at the hottest point in the cells, at the anode terminal, were found to be 6, 17 and 22 °C, respectively. The thermal resistance of the system was estimated to be below 0.2 K/W at a coolant flow rate of 0.001 Kg/s. The proposed liquid cooled module appeared to be an effective solution for maintaining cylindrical Li-ion cells close to their optimum working temperature

    Engaging Citizens and Higher Education for Innovation and Sustainable Development Goals

    Get PDF

    Effects of modality, urgency and situation on responses to multimodal warnings for drivers

    Get PDF
    Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated

    Presence studies as an evaluation method for user experiences in multimodal virtual environments

    Get PDF

    Thermal, spectroscopic and x-ray diffraction studies of copper(II) 1,2,4,5-Benzenetetracarboxylates and copper(II) oxalate a study of metal-organic frameworks

    Get PDF
    Novel and known metal organic frameworks with copper(II), sodium and 1,2,4,5-benzenetetracarboxylate were prepared by ambient precipitation, solvothermal and gel-synthesis methods, and characterized by single-crystal X-ray diffraction, X-ray powder diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetry with FTIR evolved-gas analysis. Some of these complexes were investigated for guest inclusion properties with water (the original guest species), methanol, ethanol and pyridine. The gel-synthesis products were the most interesting. The novel threedimensional metal-organic framework complex Cu₂ Na(OH)L·7H₂O (where L=1,2,4,5-benzenetetracarboxylate) -formed by gel-synthesis- is a covalent three-dimensional metal organic framework polymer with open channels containing both guest water molecules and water molecules coordinated to sodium. The structure collapsed on dehydration, but was essentially restored to the original structure on rehydration in moist air. On exposure of the dehydrated material to methanol and ethanol vapour, significant uptake of these solvents was observed, and the resolvated structures closely resembled that of the parent material. On heating in dry nitrogen, small amounts of methanol and ethanol remained until about 280 °C, when loss of the remaining guest triggered decomposition of the framework. The related complex, Cuâ‚‚ÂŒ(OH)Âœ L·7ÂœH₂O (or possibly Cu₂⅓ (OH)⅔L·8H₂O) -formed by gel-synthesis- had a different physical appearance to Cu₂Na(OH)L·7H₂O above, but had nearly identical X-ray diffraction pattern, mid-infrared spectrum and thermal behaviour. The novel complex Cu₄Na₄L₃·14H₂O -formed by gel-synthesis- is a covalent three-dimensional metal-organic framework with small channels containing both guest water molecules and water coordinated to sodium and copper. Upon dehydration the structure collapsed, but on rehydration in moist air the original structure was partly restored. The dehydrated material did not absorb methanol. Known two-dimensional polymeric complexes [Cu₂L·6H₂O]·4H₂O and [Cu₂L·4H₂O]·2H₂O were also obtained by gel-synthesis, and were characterized and investigated for guest inclusion properties. The structures of these complexes collapsed on dehydration, and were only partly restored on rehydration in saturated water vapour. The dehydrated materials did not absorb methanol. The two-dimensional polymeric mixed-ligand complex Cu₂(pyridine)₄·6H₂O -formed very slowly by gel-synthesis- was characterized by TG-FTIR, and was shown to undergo a complicated decomposition involving the loss of water and pyridine, carbon dioxide and carbon monoxide in various stages. Solvothermal synthesis did not yield materials suitable for single-crystal X-ray diffraction studies or inclusion studies, producing only an anhydrous or hemihydrate complex with the formula Cu₂L·0.65H2O. Ambient precipitation syntheses did not yield materials suitable for singlecrystal diffraction studies, forming products approximately equivalent to the complexes [Cu₂L·6H₂O]·4H₂O and Cuâ‚‚ÂŒ(OH)ÂœL·7 ÂœH₂O above. During the course of the above study it was discovered that, on changing the DSC purge from nitrogen to argon, the normally exothermic carboxylate decompositions appeared to become endothermic. The effects of the supposedly inert atmospheres of argon and nitrogen on the decomposition-mechanism of copper(II) oxalate -a well-studied copper carboxylate- were therefore studied by DSC, TG, TG-FTIR and XRPD. DSC experiments were performed in nitrogen and argon at different flow-rates, in various mixtures of nitrogen and argon, and at various heating rates. Regardless of the proportions of nitrogen and argon, the DSC residues consisted mainly of copper metal, a small amount of copper(I) oxide (cuprite) and, in some circumstances, traces of copper(II) oxide (tenorite). Also, regardless of whether TG-FTIR experiments were performed under argon or nitrogen, the gaseous decomposition products consisted mainly of carbon dioxide, with traces of carbon monoxide being detected over part of the decomposition period. Various explanations for the thermal behaviour are discussed, and it is possible that small amounts of O2 or monatomic oxygen were given off during the decomposition under argon. The design and implementation of a low-cost prototype X-ray proportional counter detector system, consisting of a hybrid analog-digital computer built using commonly available electronic components, is presented. This system was designed to replace ageing discrete-transistor designs still in use in earlier X-ray diffractometers. The prototype performs the functions of pulse-shaping, pulseheight discrimination, counting and scaling, and provides both digital and scaled analog outputs

    Understanding personal and contextual factors to increase motivation in gamified systems

    Get PDF
    Gamification, the use of game elements in non-game contexts, has been shown to help people reaching their goals, affect people's behavior and enhance the users' experience within interactive systems. However, past research has shown that gamification is not always successful. In fact, literature reviews revealed that almost half of the interventions were only partially successful or even unsuccessful. Therefore, understanding the factors that have an influence on psychological measures and behavioral outcomes of gamified systems is much in need. In this thesis, we contribute to this by considering the context in which gamified systems are applied and by understanding personal factors of users interacting with the system. Guided by Self-Determination Theory, a major theory on human motivation, we investigate gamification and its effects on motivation and behavior in behavior change contexts, provide insights on contextual factors, contribute knowledge on the effect of personal factors on both the perception and effectiveness of gamification elements and lay out ways of utilizing this knowledge to implement personalized gamified systems. Our contribution is manifold: We show that gamification affects motivation through need satisfaction and by evoking positive affective experiences, ultimately leading to changes in people's behavior. Moreover, we show that age, the intention to change behavior, and Hexad user types play an important role in explaining interpersonal differences in the perception of gamification elements and that tailoring gamified systems based on these personal factors has beneficial effects on both psychological and behavioral outcomes. Lastly, we show that Hexad user types can be partially predicted by smartphone data and interaction behavior in gamified systems and that they can be assessed in a gameful way, allowing to utilize our findings in gamification practice. Finally, we propose a conceptual framework to increase motivation in gamified systems, which builds upon our findings and outlines the importance of considering both contextual and personal factors. Based on these contributions, this thesis advances the field of gamification by contributing knowledge to the open questions of how and why gamification works and which factors play a role in this regard.Gamification, die Nutzung von Spielelementen in spielfremden Kontexten, kann nachweislich Menschen helfen, ihre Ziele zu erreichen, das Verhalten von Menschen zu beeinflussen und die Erfahrung der User in interaktiven Systemen zu verbessern. Allerdings hat die bisherige Forschung gezeigt, dass Gamification nicht immer erfolgreich ist. So haben LiteraturĂŒbersichten ergeben, dass fast die HĂ€lfte der Interventionen nur teilweise erfolgreich oder sogar erfolglos waren. Daher besteht ein großer Bedarf, die Faktoren zu verstehen, die einen Einfluss auf psychologische Maße sowie auf das Verhalten von Usern in gamifizierten Systemen haben. In dieser Arbeit tragen wir dazu bei, indem wir den Kontext, in dem gamifizierte Systeme eingesetzt werden, betrachten und persönliche Faktoren von Usern, die mit dem System interagieren, verstehen. Geleitet von der Selbstbestimmungstheorie, einer der wichtigsten Theorien zur menschlichen Motivation, untersuchen wir Gamification und dessen Auswirkungen auf Motivation und Verhalten in Kontexten zur VerhaltensĂ€nderung. Wir liefern Erkenntnisse ĂŒber kontextuelle Faktoren, tragen Wissen ĂŒber den Einfluss persönlicher Faktoren auf die Wahrnehmung und EffektivitĂ€t von Gamification-Elementen bei und bieten Möglichkeiten, dieses Wissen fĂŒr die Implementierung personalisierter gamifizierter Systeme zu nutzen. Unser Beitrag ist mannigfaltig: Wir zeigen, dass Gamification die Motivation durch BedĂŒrfnisbefriedigung und durch das Hervorrufen positiver affektiver Erfahrungen beeinflusst, was letztlich zu VerhaltensĂ€nderungen fĂŒhren kann. DarĂŒber hinaus zeigen wir, dass das Alter, die Absicht, das Verhalten zu Ă€ndern, und Hexad-Usertypen eine wichtige Rolle bei der ErklĂ€rung von interpersonellen Unterschieden in der Wahrnehmung von Gamification-Elementen spielen. Ebenso zeigen unsere Resultate dass die Anpassung von gamifizierten Systemen auf Basis dieser persönlichen Faktoren positive Auswirkungen auf psychologische und verhaltensbezogene Ergebnisse hat. Letztlich zeigen wir, dass Hexad-Usertypen teilweise durch Smartphone-Daten und Interaktionsverhalten in gamifizierten Systemen vorhergesagt werden können und dass sie auf spielerische Art und Weise erhoben werden können. Dies ermöglicht, unsere Erkenntnisse in der Gamification-Praxis zu nutzen. Auf Basis dieser Ergebnisse schlagen wir ein konzeptuelles Framework zur Steigerung der Motivation in gamifizierten Systemen vor, das die Wichtigkeit der BerĂŒcksichtigung sowohl kontextueller als auch persönlicher Faktoren hervorhebt. Diese Erkenntnisse bereichern das Forschungsfeld Gamification, indem sie Wissen zu den offenen Fragen, wie und warum Gamification funktioniert und welche Faktoren in diesem Zusammenhang eine Rolle spielen, beitragen

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Social Robot Augmented Telepresence For Remote Assessment And Rehabilitation Of Patients With Upper Extremity Impairment

    Get PDF
    With the shortage of rehabilitation clinicians in rural areas and elsewhere, remote rehabilitation (telerehab) fills an important gap in access to rehabilitation. We have developed a first of its kind social robot augmented telepresence (SRAT) system --- Flo --- which consists of a humanoid robot mounted onto a mobile telepresence base, with the goal of improving the quality of telerehab. The humanoid has arms, a torso, and a face to play games with and guide patients under the supervision of a remote clinician. To understand the usability of this system, we conducted a survey of hundreds of rehab clinicians. We found that therapists in the United States believe Flo would improve communication, patient motivation, and patient compliance, compared to traditional telepresence for rehab. Therapists highlighted the importance of high-quality video to enable telerehab with their patients and were positive about the usefulness of features which make up the Flo system for enabling telerehab. To compare telepresence interactions with vs without the social robot, we conducted controlled studies, the first to rigorously compare SRAT to classical telepresence (CT). We found that for many SRAT is more enjoyable than and preferred over CT. The results varied by age, motor function, and cognitive function, a novel result. To understand how therapists and patients respond to and use SRAT in the wild over long-term use, we deployed Flo at an elder care facility. Therapists used Flo with their own patients however they deemed best. They developed new ways to use the system and highlighted challenges they faced. To ease the load of performing assessments via telepresence, I constructed a pipeline to predict the motor function of patients using RGBD video of them doing activities via telepresence. The pipeline extracts poses from the video, calculates kinematic features and reachable workspace, and predicts level of impairment using a random forest of decision trees. Finally, I have aggregated our findings over all these studies and provide a path forward to continue the evolution of SRAT
    corecore