7,160 research outputs found

    Dynamic Power Management of High Performance Network on Chip

    Get PDF
    With increased density of modern System on Chip(SoC) communication between nodes has become a major problem. Network on Chip is a novel on chip communication paradigm to solve this by using highly scalable and efficient packet switched network. The addition of intelligent networking on the chip adds to the chip’s power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction in the circuit level, the highly dynamic nature of modern large SoC demand more than that. This dissertation explores some innovative dynamic solutions to manage the ever increasing communication power in the post sub-micron era. Today’s highly integrated SoCs require great level of cross layer optimizations to provide maximum efficiency. This dissertation aims at the dynamic power management problem from top. Starting with a system level distribution and management down to microarchitecture enhancements were found necessary to deliver maximum power efficiency. A distributed power budget sharing technique is proposed. To efficiently satisfy the established power budget, a novel flow control and throttling technique is proposed. Finally power efficiency of underlying microarchitecture is explored and novel buffer and link management techniques are developed. All of the proposed techniques yield improvement in power-performance efficiency of the NoC infrastructure

    Using MCD-DVS for dynamic thermal management performance improvement

    Get PDF
    With chip temperature being a major hurdle in microprocessor design, techniques to recover the performance loss due to thermal emergency mechanisms are crucial in order to sustain performance growth. Many techniques for power reduction in the past and some on thermal management more recently have contributed to alleviate this problem. Probably the most important thermal control technique is dynamic voltage and frequency scaling (DVS) which allows for almost cubic reduction in power with worst-case performance penalty only linear. So far, DVS techniques for temperature control have been studied at the chip level. Finer grain DVS is feasible if a globally-asynchronous locally-synchronous (GALS) design style is employed. GALS, also known as multiple-clock domain (MCD), allows for an independent voltage and frequency control for each one of the clock domains that are part of the chip. There are several studies on DVS for GALS that aim to improve energy and power efficiency but not temperature. This paper proposes and analyses the usage of DVS at the domain level to control temperature in a clustered MCD microarchitecture with the goal of improving the performance of applications that do not meet the thermal constraints imposed by the designers.Peer ReviewedPostprint (published version

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Impact of parameter variations on circuits and microarchitecture

    Get PDF
    Parameter variations, which are increasing along with advances in process technologies, affect both timing and power. Variability must be considered at both the circuit and microarchitectural design levels to keep pace with performance scaling and to keep power consumption within reasonable limits. This article presents an overview of the main sources of variability and surveys variation-tolerant circuit and microarchitectural approaches.Peer ReviewedPostprint (published version

    Three-dimensional memory vectorization for high bandwidth media memory systems

    Get PDF
    Vector processors have good performance, cost and adaptability when targeting multimedia applications. However, for a significant number of media programs, conventional memory configurations fail to deliver enough memory references per cycle to feed the SIMD functional units. This paper addresses the problem of the memory bandwidth. We propose a novel mechanism suitable for 2-dimensional vector architectures and targeted at providing high effective bandwidth for SIMD memory instructions. The basis of this mechanism is the extension of the scope of vectorization at the memory level, so that 3-dimensional memory patterns can be fetched into a second-level register file. By fetching long blocks of data and by reusing 2-dimensional memory streams at this second-level register file, we obtain a significant increase in the effective memory bandwidth. As side benefits, the new 3-dimensional load instructions provide a high robustness to memory latency and a significant reduction of the cache activity, thus reducing power and energy requirements. At the investment of a 50% more area than a regular SIMD register file, we have measured and average speed-up of 13% and the potential for power savings in the L2 cache of a 30%.Peer ReviewedPostprint (published version

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Understanding the thermal implications of multicore architectures

    Get PDF
    Multicore architectures are becoming the main design paradigm for current and future processors. The main reason is that multicore designs provide an effective way of overcoming instruction-level parallelism (ILP) limitations by exploiting thread-level parallelism (TLP). In addition, it is a power and complexity-effective way of taking advantage of the huge number of transistors that can be integrated on a chip. On the other hand, today's higher than ever power densities have made temperature one of the main limitations of microprocessor evolution. Thermal management in multicore architectures is a fairly new area. Some works have addressed dynamic thermal management in bi/quad-core architectures. This work provides insight and explores different alternatives for thermal management in multicore architectures with 16 cores. Schemes employing both energy reduction and activity migration are explored and improvements for thread migration schemes are proposed.Peer ReviewedPostprint (published version
    • …
    corecore