28,453 research outputs found
Biodiesel via in situ wet microalgae biotransformation: Zwitter-type ionic liquid supported extraction and transesterification
The production of biodiesel derived from microalgae is among the most forthcoming technologies that provide an ecologic alternative to fossil fuels. Herein, a method was developed that enables the direct extraction and conversion of algal oil to biodiesel without prior isolation. The reaction occurs in aqueous media catalyzed by immobilized Candida antarctica lipase B (Novozyme 435). Zwitter-type ionic liquids were used as cocatalyst to improve the selectivity and reactivity of the enzyme. In a model reaction with sunflower oil, 64% biodiesel was obtained. Applying this method to a slurry of whole-cell Chlorella zof ingiensis in water resulted in 74.8% of lipid extraction, with 27.7% biotransformation products and up to 16% biodiesel. Factors that reduced the lipase activity with whole-cell algae were subsequently probed and discussed. This "in situ" method shows an improvement to existing methods, since it integrates the oil extraction and conversion into an one-pot procedure in aqueous conditions. The extraction is nondisruptive, and is a model for a greener algae to biodiesel process
Prospects of microalgal biodiesel production in Pakistan – a review
Biodiesel is an alternative, renewable, biodegradable and environmentally friendly fuel for transportation, with properties like petroleum-derived diesel, and can be used directly in a compression ignition engine without any modifications. The world's fossil fuel and crude oil reserves are going to dry up in the next few decades, but, contrariwise, an attractive, high quality, readily available and economically extractable oil from microalgae is a substitute feedstock to produce alternative biodiesel fuel for the transportation sector in the future. Microalgae have a higher biomass productivity (tons/hectare/year) and lipid yield (kg/kg of algal biomass) as compared to vegetable oil crops. To overcome the problem of energy deficiency in developing countries, like Pakistan, and boost their economic growth, alternative fuels are proving very important for environment-friendly and sustainable development, especially in the last few decades. Different research studies on microalgae cultivation, characterization of microalgae oil (lipids), and evaluations of its socio-economic feasibility to produce renewable biodiesel have been conducted in the past in Pakistan for its future prospects. This review paper includes the overall summary and compilation of the microalgae research conducted in Pakistan on biodiesel production and includes the algal biodiesel production cost analysis. The studies showed promising results for harnessing microalgae and using its lipids to produce biodiesel with favourable properties that were comparable to the conventional diesel in Pakistan. The information related to the microalgae research will help stakeholders and governmental organisations working in the renewable energy sector to consider its cultivation on a large scale, using waste water as a feedstock to produce biodiesel to meet the target set by the Government of Pakistan of using 10% blended biodiesel by the year 2025 in Pakistan
Microalgae cultivation for lipids and carbohydrates production
Microalgae are photoautotrophic microorganisms that can produce energy both by using sunlight, water and CO2 (phototrophic metabolism) and by using organic sources such as glucose (heterotrophic metabolism). Heterotrophic growth is a key factor in microalgae research, due to its increased productivity and the lower capital and operative costs compared to photoautotrophic growth in photobioreactors. Carbohydrate production from microalgae is usually investigated for the production of biofuels (e.g. bioethanol) by successive fermentation, but also other applications can be envisaged in biopolymers. In this work an increment in carbohydrate purity after lipid extraction was found. Protein hydrolysis for different microalgae strains (Scenedesmus sp. and Chlorella sp.) was investigated. Microalgae were cultivated under photoautotrophic or heterotrophic conditions, collecting biomass at the end of the growth. Biomass samples were dried or freeze dried and used for carbohydrate and lipid extraction tests. Lipid extraction was achieved using different organic solvents (methanol-chloroform and hexane-2propanol). Basic protein hydrolysis has been carried out testing different temperatures and NaOH concentrations values. Lipids were spectrophotometrically quantified, while residual biomass was saccharificated and the total amount of sugars was measured. Significant differences about the purity of extracted carbohydrates were found comparing dried with freeze dried biomass. However, not a very promising purification of carbohydrates was achieved after protein hydrolysis, asking for further analysis. © Copyright 2017, AIDIC Servizi S.r.l
Integrating microalgae production with anaerobic digestion: a biorefinery approach
This is the peer reviewed version of the following article: [Uggetti, E. , Sialve, B. , Trably, E. and Steyer, J. (2014), Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Bioref, 8: 516-529. doi:10.1002/bbb.1469], which has been published in final form at https://doi.org/10.1002/bbb.1469. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingIn the energy and chemical sectors, alternative production chains should be considered in order to simultaneously reduce the dependence on oil and mitigate climate change. Biomass is probably the only viable alternative to fossil resources for production of liquid transportation fuels and chemicals since, besides fossils, it is one of the only available sources of carbon-rich material on Earth. Over recent years, interest in microalgae biomass has grown in both fundamental and applied research fields. The biorefinery concept includes different technologies able to convert biomass into added-value chemicals, products (food and feed) and biofuels (biodiesel, bioethanol, biohydrogen). As in oil refinery, a biorefinery aims at producing multiple products, maximizing the value derived from differences in biomass components, including microalgae. This paper provides an overview of the various microalgae-derived products, focusing on anaerobic digestion for conversion of microalgal biomass into methane. Special attention is paid to the range of possible inputs for anaerobic digestion (microalgal biomass and microalgal residue after lipid extraction) and the outputs resulting from the process (e.g. biogas and digestate). The strong interest in microalgae anaerobic digestion lies in its ability to mineralize microalgae containing organic nitrogen and phosphorus, resulting in a flux of ammonium and phosphate that can then be used as substrate for growing microalgae or that can be further processed to produce fertilizers. At present, anaerobic digestion outputs can provide nutrients, CO2 and water to cultivate microalgae, which in turn, are used as substrate for methane and fertilizer generation.Peer ReviewedPostprint (author's final draft
A Mathematical model to guide Genetic Engineering of Photosynthetic Metabolism
open5noThe optimization of algae biomass productivity in industrial cultivation systems requires genetic improvement of wild type strains isolated from nature. One of the main factors affecting algae productivity is their efficiency in converting light into chemical energy and this has been a major target of recent genetic efforts. However, photosynthetic productivity in algae cultures depends on many environmental parameters, making the identification of advantageous genotypes complex and the achievement of concrete improvements slow. In this work, we developed a mathematical model to describe the key factors influencing algae photosynthetic productivity in a photobioreactor, using experimental measurements for the WT strain of Nannochloropsis gaditana. The model was then exploited to predict the effect of potential genetic modifications on algae performances in an industrial context, showing the ability to predict the productivity of mutants with specific photosynthetic phenotypes. These results show that a quantitative model can be exploited to identify the genetic modifications with the highest impact on productivity taking into full account the complex influence of environmental conditions, efficiently guiding engineering efforts.embargoed_20181201Perin, Giorgio; Bernardi, Andrea; Bellan, Alessandra; Bezzo, Fabrizio; Morosinotto, TomasPerin, Giorgio; Bernardi, Andrea; Bellan, Alessandra; Bezzo, Fabrizio; Morosinotto, Toma
Development of semi-theoretical light radiation and photosynthetic growth model for the optimal exploitation of wastewaters by microalgae
In the last decade, interest toward the potential application of microalgae has grown considering their potential use in industrial sectors as human nutrition and health, animal feed and biopolymers. Their ability to use light or/and organic carbon as energy source, makes them able to grow in a wide range of conditions. Because of that, the possibility to use alternative nutrients and water sources for their cultivation has been investigated. The microalgal cultivation using wastewaters mixed with synthetic medium might be a good combination that could
reduce costs of water, nutrients and wastewater treatment. Anyway, wastewaters are frequently dark colored and contain toxic compounds that could have a negative impact on microalgal light uptake and metabolism. In this study, an experimental first principles hybrid method for the estimation of microalgal growth in non-transparent media was developed as a guide in the choice of the best formulation of wastewater-based culture media for microalgae. To carry out several experimental runs in parallel with different conditions (dilution of the
wastewater, different light sources, etc.) a cylindrical bubble column PhotoBioReactor (PBR) was adopted. Its simple geometry allows the analysis of inside light fluxes. A non-metabolizable and non-toxic dye, in condition of purely light-radiative growth limitation, was added to the medium mimicking the reduced transparency of wastewaters. As final step to test the model, culture mediums with wastewater addiction were used for microalgal cultivation, showing their nutritive effects on growth
Mathematical Model of \u3cem\u3eChlorella minutissima\u3c/em\u3e UTEX2341 Growth and Lipid Production Under Photoheterotrophic Fermentation Conditions
To reduce the cost of algal biomass production, mathematical model was developed for the first time to describe microalgae growth, lipid production and glycerin consumption under photoheterotrophic conditions based on logistic, Luedeking–Piret and Luedeking–Piret-like equations. All experiments were conducted in a 2 L batch reactor without considering CO2 effect on algae’s growth and lipid production. Biomass and lipid production increased with glycerin as carbon source and were well described by the logistic and Luedeking–Piret equations respectively. Model predictions were in satisfactory agreement with measured data and the mode of lipid production was growth-associated. Sensitivity analysis was applied to examine the effects of certain important parameters on model performance. Results showed that S0, the initial concentration of glycerin, was the most significant factor for algae growth and lipid production. This model is applicable for prediction of other single cell algal species but model testing is recommended before scaling up the fermentation of process
Connecting Carbon Capture with Oceanic Biomass Production
The climate change believed by anthropogenic emission is not isolated but tightly coupled with other issues including biodiversity loss and ocean acidification etc., and in order to prevent the potential serious impacts, both political and technological methods are being tried for greenhouse mitigation. Dimming the income sunlight by some “geoengineering” approaches currently seem ruinously expensive and technically difficult, and would not prevent the increase of greenhouse gases (GHGs) in atmosphere and ocean acidification, so capturing carbon to reduce the environmental concentration of carbon dioxide (CO2) and promoting renewable energy development for the reduction of using fossil fuels are very necessary. Biofuels derived from natural and agricultural biomass could be deployed for power production and existing transportation needs. The current economics are more favorable for conversion of edible biomass into biofuels, which could spend plenty of freshwater and farmlands, compete with food supply, and create a “carbon debt” with local ecosystem destruction by deforestation to expand biofuel-crop production. So it is vital to develop processes for converting non-edible feedstock such as lignocellulose and microalgae into biofuels.
 Compared with lignocellulose, microalgae have higher growth rates, don’t need plenteous freshwater for irrigating, and can grow in the conditions that are not favorable for terrestrial biomass growth. The current limitation of microalgal biofuels is the microalgae cultivation cost, and to compensate the high cost of microalgal biofuels, three suggestions are propounded here. (i) Using ships as the platforms of cultivating microalgae, producing biofuels, and transporting feedstock and products on a large scale on subtropical oligotrophic oceans, where the ocean’s least productive waters are formed with compared peaceful surface condition and poor marine communities. (ii) Operating different kinds of oceanic biomass productions for high-value products to compensate the cost of microalgal biofuels. Different kinds of microalgae and macroalgae (seaweeds) could be cultivated for biofuels, chemicals, healthy food, and feed for breeding economic marine species to satisfy the accelerating demands for seafood supply and simultaneously mitigate the fast decline of wild stocks. (iii) Constituting financial subsidies to make CO2 as the feedstock of microalgae cultivation for free, and exact quantifying the carbon captured in biomass products and the CO2 reduction that these products would provide by displacing natural and nonrenewable carbon resources, to take part in the international carbon-credit trading markets and sell the offsets. In a word, this article mainly talks about trying to find a way that connect CO2 capture with renewable energy development, and partially combat against deforestation, loss of biodiversity, shortage of food, and decline of marine lives etc., if possible
Flashing LEDs for microalgal production
Flashing lights are next-generation tools to mitigate light attenuation and increase the photosynthetic efficiency of microalgal cultivation systems illuminated by light-emitting diodes (LEDs). Optimal flashing light conditions depend on the reaction kinetics and properties of the linear electron transfer chain, energy dissipation, and storage mechanisms of a phototroph. In particular, extremely short and intense light flashes potentially mitigate light attenuation in photobioreactors without impairing photosynthesis. Intelligently controlling flashing light units and selecting electronic components can maximize light emission and energy efficiency. We discuss the biological, physical, and technical properties of flashing lights for algal production. We combine recent findings about photosynthetic pathways, self-shading in photobioreactors, and developments in solid-state technology towards the biotechnological application of LEDs to microalgal production.Foundation for Science and Technology (FCT, Portugal) [CCMAR/Multi/04326/2013]Nord UniversityNordland County Government (project Bioteknologi en framtidsrettet naering)INTERREG V-A Espana-Portugal project [0055 ALGARED + 5E]Portuguese Foundation for Science and Technology [SFRH/BD/105541/2014, SFRH/BD/115325/2016]info:eu-repo/semantics/publishedVersio
A site selection model to identify optimal locations for microalgae biofuel production facilities in sicily (Italy)
The lack of sustainability and negative environmental impacts of using fossil fuel resources for energy production and their consequent increase in prices during last decades have led to an increasing interest in the development of renewable biofuels. Among possible biomass fuel sources, microalgae represent one of the most promising solutions. The present work is based on the implementation of a model that facilitates identification of optimal geographic locations for large-scale open ponds for microalgae cultivation for biofuels production. The combination of a biomass production model with specific site location parameters such as irradiance, geographical constraints, land use, topography, temperatures and CO2 for biofuels plants were identified in Sicily (Italy). A simulation of CO2 saved by using the theoretical biofuel produced in place of traditional fuel was implemented. Results indicate that the territory of Sicily offers a good prospective for these technologies and the results identify ideal locations for locating biomass fuel production facilities. Moreover, the research provides a robust method that can be tailored to the specific requirements and data availability of other territories. © Research India Publications
- …
