3,119 research outputs found

    Thinking About You: Perspective Taking, Perceived Restraint, and Performance

    Get PDF
    Conflict often arises when incompatible ideas, values or interests lead to actions that harm others. Increasing people’s willingness to refrain from harming others can play a critical role in preventing conflict and fostering performance. We examine perspective taking as a relational micro-process related to such restraint. We argue that attending to how others appraise events supports restraint in two ways. It motivates people to act with concern and enables them to understand what others view as harmful versus beneficial. Using a matched sample of 147 knowledge workers and 147 of their leaders, we evaluate the impact of appraisal-related perspective taking on leaders’ perceptions of knowledge workers’ restraint and performance

    Residence time distribution of gas flows in microreactors: Measurement and model comparison

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.The optimization of microreactor designs for applications in chemical process engineering usually requires knowledge of the residence time distribution (RTD). The applicability of established models to microstructured reactors is currently under debate (Bošković et al. 2008, Günther et al. 2004, Stief et al. 2008). This work provides new experimental data on the residence time distributions of gas flows through different types of microstructured reactors and analyses the data with established RTD models. By this, the dispersion model was found to describe the RTD behavior of gas flow for a majority of the microstructured devices tested. The model could therefore be used to predict the RTD of those reactors.German Federal Ministry of Economics and Technology (IGF Project 15495

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges

    Implementing CSR through partnerships: Understanding the selection, design and institutionalisation of nonprofit-business partnerships

    Get PDF
    Partnerships between businesses and nonprofit organisations are an increasingly prominent element of corporate social responsibility implementation. The paper is based on two in depth partnership case studies (Earthwatch-Rio Tinto and Prince’s Trust-Royal Bank of Scotland) that move beyond a simple stage model to reveal the deeper level micro-processes in the selection, design and institutionalisation of business-NGO partnerships. The suggested practice-tested model is followed by a discussion that highlights management issues within partnership implementation and a practical Partnership Test to assist managers in testing both the accountability and level of institutionalisation of the relationship in order to address any possible skill gaps. Understanding how CSR partnerships are implemented in practice contributes to the broader CSR and partnership literatures a context specific level of detail in a systematic way that allows for transferable learning in both theory and practice

    Experimental investigation on self-similar heat sinks for liquid cooled electronics

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.The high heat transfer coefficients in microchannels are attractive for direct cooling of electronic systems requiring high heat-flux removal. In this work we are presenting the results of a study on self-similar heat sinks for liquid cooled electronics, made from copper, designed for industrial application and for large scale production. The internal structures, where the most part of the active cooling takes place, have been designed in order to achieve high heat transfer coefficients. As it is almost impossible to validate the design and describe the flow characteristics inside the device via analytical solutions, a well known numerical code was employed to have an insight of the thermal-fluid distributions. It is clear from the simulation that even if copper is characterized by a high thermal conductivity, most of the heat is removed in the overflow-structure, on the side of the device adjacent to the source of heat. This paper attempts to critically analyse a comprehensive list of data as well as plots in order to illustrate the significant characteristics of this type of device

    Heat transfer enhancement with gas-to-gas micro heat exchangers

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A characterization of gas-to-gas micro heat exchangers has been performed in terms of pressure drop behavior and heat transfer performance. The gas-to-gas micro heat exchangers differ by partition wall material, partition wall thickness and flow arrangement. The pressure drop behavior has been analyzed due to the pressure losses in different sections of the gas-to-gas micro heat exchangers. Increased pressure losses in front of and behind the micro channels have been detected due to modified geometries in the inlet and outlet distribution chambers. The heat transfer performance has been determined in terms of thermal effectiveness. The comparison among different partition wall materials and partition wall thicknesses showed no significant criteria of the influence of thermal conductivity on the thermal effectiveness. An assessment due to an overall heat exchanger effectiveness has been performed to compare the gas-to-gas micro heat exchangers. For this purpose, the overall exergy loss has been calculated by combination of thermal effectiveness and pressure losses. A strong impact of the exergy loss due to pressure drop has been detected which influences the overall exergy loss of the gas-to-gas micro heat exchangers

    Effect of PAO-based γ-Fe2O3 and surfactant concentration on viscosity characteristic

    Get PDF
    This is a preliminary study on the viscosity characteristics of polyalphaolefin (PAO)- based γ-Fe2O3 under zero magnetic fields. By varying the concentration of magnetic nanoparticles (MNPs), PAO-based γ-Fe2O3 with different concentrations were synthesized by co-precipitation method. The effect of this factor on the viscosity characteristic of γ-Fe2O3 (< 30 nm) was investigated on the basic of a series of rheological measurement. The use of oleic acid (OA) as a coating agent and surfactant was also investigated by varying its concentration. The results show the concentration of MNPs and the amount of OA has obvious effect on viscosity characteristics of PAO-based γ-Fe2O3. In the case of comparison between the concentrations of MNPs, higher concentration of MNPs increased the viscosity of the PAO-based γ-Fe2O3 and exhibit nearly Newtonian behavior. The large amount of OA also exhibits the increment on viscosity characteristic of MNPs. The experimental data were compared with the Bingham and Casson model and the results revealed that the rheology of the polyalphaolefin (PAO)-based γ-Fe2O3 fitted the Casson model better

    A clinical heritage of empirical research. In memory of Jeremy Safran

    Get PDF
    This is Part II of a special issue, Research in Psychotherapy: Psychopathology, Process and Outcome, dedicated in memory of our colleague Jeremy Safran (Part I was published in April 2019). All of the contributions (theoretical papers, clinical cases, qualitative and quantitative studies) presented in this second part of the special issue focus on the topic of ruptures and resolutions in the therapeutic alliance. Each paper demonstrates a unique approach, perspective, and methodology

    Microstructure devices for process intensification: Influence of manufacturing tolerances and measurement uncertainties

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Process intensification by miniaturization is a common task for several fields of technology. Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and problems gained also interest in chemistry and chemical process engineering. While the integration of enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself has been realized in all material classes, namely metals, ceramics and polymers. First devices have been manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties and design show much larger influence to the process than in macro scale. Many of the devices generated alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations on the design and production of devices for micro process engineering should be made to provide devices which show reproducible and controllable process behavior. This following publication gives some examples
    corecore