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Abstract Process intensification by miniaturization is a common task for several fields of technology. 
Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and 
problems gained also interest in chemistry and chemical process engineering. While the integration of 
enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself 
has been realized in all material classes, namely metals, ceramics and polymers. First devices have been 
manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties 
and design show much larger influence to the process than in macro scale. Many of the devices generated 
alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the 
design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations 
on the design and production of devices for micro process engineering should be made to provide devices 
which show reproducible and controllable process behavior. This following publication gives some 
examples. 
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1. Introduction 
 
 In many fields of technology, process 
intensification is a major task to deal with. 
Integration of more functionality and greater 
flexibility as well as higher selectivity and/or 
higher yield is an objective for developments 
in communication technology as well as in 
mechanical, chemical and biological process 
engineering. The success of miniaturization in 
intensifying communication technology is easy 
to see due to the fact that the power and 
abilities of microelectronic equipment have 
increased drastically within the last decades – 
cellular phones and modern computer 
technologies are examples of this. 
In terms of process engineering, the 
advantages of miniaturization are easy to 
describe. Heat and mass transfer using fluids 
can be greatly increased if the characteristic 
distances are reduced. According to (1), the 
mixing time tM based on diffusion with the 
fluid-specific diffusion coefficient D is 
drastically reduced if the characteristic length 
x is minimized. This is shown in Fig. 1 for 
nitrogen and water as sample fluids. Similar 

considerations hold for the heat transfer time. 
Finally, it can be shown that miniaturization of 
process engineering equipment can increase 
the performance of certain basic operations 
like heat transfer or mixing by at least one 
order of magnitude, sometimes even much 
more [1]. 

D
xtM ⋅

=
2

2

    (1) 

However, miniaturization results also in an 
increased sensitivity to deviations of the 
process parameters, including the design and 
properties of the process technology 
equipment itself. 
While designing micro process engineering 
equipment, there are several restrictions to 
consider. The application is the major one, but 
the aspects of material, producibility and re-
producibility are not much less important. 
Micro process engineering equipment have to 
be suitably designed for manufacturing in the 
designated material. Assembly and sealing has 
to be considered besides the opportunity to 
generate more than only a single prototype 
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device, which needs to take into account 
manufacturing tolerances to obtain the same 

 

process behavior in each device [2]. 

aterial properties have to be considered first 

.1 Manufacturing influences 

anufacturing influences can be classified as 

e heat 

raulic 

ary tube, which can 

rop for a fluid running 

Fig. 1: Diffusion time for N2 and water as 
function of the characteristic dimension. 
 
For process engineering equipment of 
conventional dimensions, surface roughness is 
not a major task to deal with. In several 
applications a rough surface may lead to an 
increased fouling tendency, but in general, the 
functionality of the devices is not much 
changed by the surface roughness. 
Surface quality and surface roughness in 
microstructure devices are of major 
importance due to two reasons: fouling and 
reduction of hydraulic diameter. Fouling in 
microstructures will very rapidly lead to 
malfunction of the complete device. The 
reduction of the hydraulic diameter due to 
increased surface roughness will increase the 
pressure drop as well as a possible mal-
distribution of fluids to parallel 
microstructures. 
Aside of the considerations for design and 
manufacturing, measurement and control of 
the process parameters are essential to run 
them in a desired way. Therefore, the choice of 
measurement method and sensors as well as 
the correct positioning of those within the 
microstructure process equipment is a 
relatively complex task to deal with. 
 
2. Influence of Material, 
Manufacturing and Design 
 
2.1 Material influences 
 

M
when thinking of a certain application to be 
run in microstructure devices. The questions 
arising here are for mechanical stability, 
chemical or corrosion resistance, thermal and 
electrical properties as well as the way of 
manufacturing. The choice of material also 
defines the manufacturing method – some 
materials can not be used for, i.e., precision 
machining [2, 3]. 
 
2
 
M
surface quality (or roughness) and 
manufacturing precision (or tolerances). 
High surface roughness may increase th
transfer, but also make a device more prone to 
fouling and generation of deposit layers. 
Figure 2 shows examples of structures 
manufactured by laser machining (Fig. 2a), 
wet chemical etching (Fig. 2b) and precision 
milling (Fig. 2c). It is clear to see that the 
surface roughness can be influenced by the 
correct manufacturing method and parameters. 
Moreover, the influence of roughness to the 
flow behavior and to the fluid dynamic 
properties of microstructure devices is much 
stronger than that in macro scale. This is due 
to a different ratio between the structural 
dimensions and the roughness. A brief 
example shall show this in an easy way. 
Assuming a conventional tube with a hyd
diameter of 0.1 m. This tube can be purchased 
off the shelf, the mean roughness in such a 
tube – i.e. stainless steel – being about 100µm. 
Thus, the ratio between roughness and 
hydraulic diameter is only 10-3. The roughness 
dimensions are only in the range of 0.1% of 
the structural dimensions. 
Taking now a micro capill
also be ordered off the shelf. The hydraulic 
diameter is 100µm, and the mean roughness is 
10µm – thus, the ratio is 0.1! The roughness 
dimensions are now in the range of 10% of the 
structural dimensions. 
If now the pressure d
through these devices is calculated, assuming 
strictly laminar flow, then it is quite clear that 
in the conventional case the reduction of the 
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hydraulic diameter by 0.1% does not reveal a 
major pressure drop increase. In fact, an 
increase of 0.4% is, in most cases, below the 
measurement resolution. 

 

 

 
 

ig. 2: SEM pictures of micro channels 

or the micro scale capillary, the hydraulic 

, it 

er importance is the manufacturing 

 channels C1 and C2, 

a

F
manufactured by laser machining (2a, top), 
wet chemical etching (2b, middle) and 
precision milling (2c, bottom). Obviously the 
parameters for laser machining have not been 
chosen correctly. 
 
F

diameter is reduced by 10% - which results in 
an increase of the pressure drop by 52.5%. 
However, surface roughness is unavoidable
can be taken into account when designing 
microstructure devices to use, e.g., structural 
dimensions slightly larger than those really 
needed to avoid effects like the one described 
above. 
Of high
precision, i.e. the tolerances that can be 
obtained by the technique considered. 
Tolerances in the dimensions of 
microstructures can have a large influence on 
the distribution of the fluid in the 
microstructure system. An example explains 
this in greater detail: 
Assuming two micro
laying directly beneath each other. For channel 
C1, the hydraulic diameter is given by dh. The 
hydraulic diameter of the other channel C2 
should be the same, but is, due to 
manufacturing tolerances, reduced by a 
fraction of x (taken in %). Assuming laminar 
flow through both micro channels, the pressure 
drop Δp1 or Δp2, respectively, can be 
calcul ted for each of them. Building the ratio 
between those two pressure drop values leads 
to a result which is free of fluid parameters but 
only depending on the ratio of the hydraulic 
diameters. It is given in eq. (2). 
 

4
1

2

)1(
1
xp

p
−

=
Δ
Δ     (2) 

 
 is quite obvious from this equation that the 

 or 

It
pressure drop in the smaller channel C2 is 
much higher than that in the larger one – the 
difference follows a calculation law to the 
fourth power! This will, of course, lead to 
deviations in the mass flow per channel as well 
as in the fluid distribution of the complete 
micro system [4]. Moreover, variables like 
reaction rate, heat transfer, temperature 
distribution and generation of hot spots or cold 
spots are influenced more or less strongly. 
However, the generation of hot spots
uneven temperature or flow distribution can be 
highly influenced by design of the 
microstructure devices. 
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2.3 Design influences 

he design of microstructure devices can have 

.3.1 Micro heat exchanger design 

icro heat exchangers of different design can 

of a crossflow 

el foil for 

iven in Figure 3 and 4 are 

m conventional devices 

ed 

 
T
large influence on the distribution of 
temperature as well as that of the fluid. 
Related to those, mass and energy transfer are 
influenced to a major extent. This will be 
shown by two examples. 
 
2
 
M
be obtained for numerous applications. Most 
common designs are crossflow devices and 
countercurrent or co-current flow devices. The 
difference in both designs seems not to be very 
large, but the difference in the integral outlet 
temperature is reasonable [5]. 
Figure 3 shows an example 
microstructure heat exchanger. Fig. 3a gives 
an inside view of the micro channel system, 
while Fig. 3b shows the full device. 
Figure 4a shows a single micro chann
a countercurrent / co-current flow heat 
exchanger, while in Figure 4b a complete 
device is presented. The device can be used for 
both flow methods, countercurrent and co-
current flow. The flow mode simply depends 
on the application of the fluids to the inlet and 
outlet fittings. 
The devices g
manufactured from stainless steel, assembled 
and bonded by diffusion bonding. A detailed 
description of the manufacturing processes can 
be found in [5, 6, 7]. 
It is well known fro
that the temperature behavior is different for 
the flow modes obtained in the devices. A 
similar, but more visible trend can be obtained 
with microstructure devices. The plots in 
Figure 5 a- c give an overview of the 
possibility of controlling the integral outlet 
temperature behavior by simply changing the 
configuration of the microstructure device. 
All data shown in the plots have been obtain
by experiments using water in both liquid 
passages. Temperatures at the inlet and the 
outlet have been measured with PT100 
temperature sensors, installed in the center of 
the adapter fitting to the respective inlet or 

outlet, keeping a distance of about two 
centimeters to the microstructures. In the 
figures, the inlet and outlet temperatures for 
three configurations, crossflow, countercurrent 
and co-current flow, are plotted against the 
Reynolds number Re. 

 
 

ig. 3: Crossflow micro channel arrangement 

igure 4a shows the results of the crossflow 

a countercurrent configuration, the 

F
(Fig. 3a, left), crossflow micro heat exchanger 
(Fig. 3b, right). 
 
F
heat exchanger. A crossing-over of the 
temperatures is obvious at a Reynolds number 
of about 150. The final temperature difference 
of the streams at outlet reaches a maximum of 
20K. 
For 
temperature crossing is reached at a much 
higher Reynolds number of about 300, and the 
outlet temperature difference is much smaller, 
reaching only about 10K (see Figure 5b). 
Finally, in co-current flow configuration, there 
is no crossing of the outlet temperatures 
anymore. They will run into saturation and 
meet somewhere more or less precisely, which 
could not obtained here due to some pressure 
drop limitations. Knowing the temperature 
plots, it is relatively easy to control the 
temperature behavior of a process by simply 
choosing the flow configuration best suited for 
it. 

 
 

ig. 4: Countercurrent / co-current flow micro F
channel arrangement (Fig. 4a, left), 
countercurrent / co-current micro heat 
exchanger (Fig. 4b, right). 
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Even stronger influences can be obtained by 

e temperature behavior is just shifted 

heat transfer 

this it is obvious that it might be useful 

changing the integrated microstructure [8]. 
Examples for the microstructures to be 
integrated in such devices are given in Figure 
6. In crossflow configuration, changing  from 
an array of linear micro channels to a linear 
arrangement of micro columns or to a 
staggered arrangement of micro columns (see 
Figure 6 top left, bottom left, bottom middle) 
shows a shift of the temperature behavior to 
high Reynolds numbers, as can be seen in 
Figure 7 as well as in Figure 8. As it is 
presented in Figure 8, it may result the 
temperature behavior of a crossflow device 
being similar to that of a co-current flow 
device. 
While th
by changing the integrated microstructure 
design, the pressure drop behavior is very 
different, as shown in Figure 9. Here, the 
pressure drop is plotted against the cold water 
mass flow for three different microstructure 
heat exchangers in crossflow mode, namely 
long linear micro channels, a linear 
arrangement of micro columns and a staggered 
arrangement of micro columns.  
Figure 10 shows the overall 
coefficient obtained for the same three 
configurations and as a function of pressure 
drop. 
From 
to have variations in the microstructure design. 
At first sight, the increased pressure drop (as 
shown in Figure 9) may be a major drawback 
for some devices. However, the increase in the 
overall heat transfer coefficient as shown in 
Figure 10 is substantial. Thus, depending on 
the application, it might be worth looking 
more closely at such a design and to apply it 
where it shows advantages. In fact, an attempt 
should be made to combine together low 
pressure drop and high overall heat transfer 
coefficients together. This can be achieved by 
a very careful change of the integrated 
microstructure, as shown in [8]. 
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Fig. 5: Integral inlet and outlet temperatures of 
micro heat exchangers in different flow 
configurations, plotted against the Reynolds 
number Re. 5a (top): Crossflow mode; 5b 
(middle): Countercurrent flow mode; 5c 
(bottom): Co-current flow mode. 
 
 
2.3.2 Microstructure evaporators 
 
Phase transition in microstructures is a process 
very sensitive to many parameters, including 
applied mass flow, temperature distribution, 
applied thermal power, surface quality and 
design of the microstructures and some others 
more. 
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Fig. 6: Different microstructure arrangements 
manufactured in stainless steel. 
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Fig. 7: Temperature plotted vs. Reynolds 
number for a linear arrangement of micro 
columns in a crossflow micro heat exchanger. 
The plot shows a detailed view to the crossing 
over of the outlet temperature at high Re. 
 
In most cases, microstructure evaporators are 
designed using parallel arrangements of 
numerous micro channels providing 
dimensions large enough to obtain full 
evaporation [9, 10]. The most critical 
dimension here is the length of the micro 
channels, which can not be predicted precisely. 
Thus, in most cases very long micro channels 
are used to provide a residence time 
sufficiently high for full evaporation. This 
leads to an increased pressure drop and to 
undesired side effects like superheating of 
steam. 
A parameter often neglected is the flow 
distribution at entry to the evaporation 
channels. Some authors considered improving 
the flow distribution for single phase flows 
[11, 12, 13]. Moreover, it could be shown that 
the design of the flow distributor at the inlet of 
a micro channel array has a major influence on 
the phase transition [14].  
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Fig. 8: Temperature plotted vs. Reynolds 
number for a staggered arrangement of micro 
columns in a crossflow micro heat exchanger. 
There might be a crossing over of the outlet 
temperatures at high Re, but this could not be 
achieved. 
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Fig. 9: Pressure drop plotted vs. cold water 
massflow for three different crossflow micro 
heat exchangers [8].  
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Fig. 10: Overall heat transfer coefficient 
plotted vs. pressure drop for three different 
crossflow micro heat exchangers [8]. 
 
Figure 11 shows three possible flow 
distribution systems for a micro channel array: 
a plain slit (top left), a triangular void (top 
right) and a tree-like branched system 
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(middle). The SEM picture at the bottom 
shows a detail of the branch system. 
The hydraulic diameter of the single branches 
of the latter system have been calculated 
according to the principle of minimum work 
(Murray’s law, [15]). Hence, the ratio between 
the hydraulic diameter of an inlet branch dh1 
and the following up split branch dh2 is given 
by 
 

3
1

2

1 2=
h

h

d
d

    (3) 

 
Easy pre-calculations under the assumption of 
ideal flow paths for the three different systems 
shown in Fig. 11 give an idea on the shape of 
the phase transition frontline generated inside 
the micro channel array. Figure 12 shows the 
channel number plotted vs. inverse residence 
time of the fluid for the slit, compared to a 
photo of the phase transition. It is clear that the 
two pictures correspond very well. 
Using a triangular flow distribution system, 
the residence time across the micro channels 
will form a parabolic shape. This can be seen 
also in the shape of the phase transition line 
while evaporation takes place, as given in 
Figure 13. 
Finally, if the tree-like branch flow distributor 
system is applied, the residence time should be 
the same in all micro channels of the array, 
resulting in a phase transition line 
perpendicular to the flow direction. However, 
due to manufacturing tolerances and three-
dimensional steps in the real microstructure 
branching system (see Fig. 11), a phase 
transition area is reached, with a frontline 
more or less perpendicular to the flow 
direction. The respective result is shown in 
Figure 14. 
 
3. Summary 
 
Microscale devices can provide intensification 
options for processes by using the increased 
specific surface area, improved heat and mass 
transfer and other options.  
However, such devices have to be designed 
and manufactured with much more care than at 

the macro scale. Effects like roughness or 
manufacturing tolerances have a large 
influence on the flow behavior as well as on 
the process. Some examples have been used to 
show this in overview style. 
 

 

 

 
 
Fig. 11: Different flow distributors for micro 
channel array evaporators [14, 16]. 
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Fig. 12: Inverse residence time plot (left), 
phase transition line shape (right) for a slit 
flow distributor. 
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Fig. 13: Inverse residence time plot (left), 
phase transition line shape (right) for a 
triangular flow distributor. 
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Fig. 14: Inverse residence time plot (left), 
phase transition line shape (right) for a tree-
like flow distributor according to [15]. 
 
Nomenclature 
D  diffusion coefficient [m2/s] 
dh  hydraulic diameter [m] 
p  pressure [MPa] 
tM  mixing time [s] 
x  length, position [m] 
 
Δ  difference [-] 
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	Surface quality and surface roughness in microstructure devices are of major importance due to two reasons: fouling and reduction of hydraulic diameter. Fouling in microstructures will very rapidly lead to malfunction of the complete device. The reduction of the hydraulic diameter due to increased surface roughness will increase the pressure drop as well as a possible mal-distribution of fluids to parallel microstructures.
	Aside of the considerations for design and manufacturing, measurement and control of the process parameters are essential to run them in a desired way. Therefore, the choice of measurement method and sensors as well as the correct positioning of those within the microstructure process equipment is a relatively complex task to deal with.
	2. Influence of Material, Manufacturing and Design
	2.1 Material influences
	Material properties have to be considered first when thinking of a certain application to be run in microstructure devices. The questions arising here are for mechanical stability, chemical or corrosion resistance, thermal and electrical properties as well as the way of manufacturing. The choice of material also defines the manufacturing method – some materials can not be used for, i.e., precision machining [2, 3].
	2.1 Manufacturing influences
	Manufacturing influences can be classified as surface quality (or roughness) and manufacturing precision (or tolerances).
	High surface roughness may increase the heat transfer, but also make a device more prone to fouling and generation of deposit layers. Figure 2 shows examples of structures manufactured by laser machining (Fig. 2a), wet chemical etching (Fig. 2b) and precision milling (Fig. 2c). It is clear to see that the surface roughness can be influenced by the correct manufacturing method and parameters.
	Moreover, the influence of roughness to the flow behavior and to the fluid dynamic properties of microstructure devices is much stronger than that in macro scale. This is due to a different ratio between the structural dimensions and the roughness. A brief example shall show this in an easy way.
	Assuming a conventional tube with a hydraulic diameter of 0.1 m. This tube can be purchased off the shelf, the mean roughness in such a tube – i.e. stainless steel – being about 100µm. Thus, the ratio between roughness and hydraulic diameter is only 10-3. The roughness dimensions are only in the range of 0.1% of the structural dimensions.
	Taking now a micro capillary tube, which can also be ordered off the shelf. The hydraulic diameter is 100µm, and the mean roughness is 10µm – thus, the ratio is 0.1! The roughness dimensions are now in the range of 10% of the structural dimensions.
	If now the pressure drop for a fluid running through these devices is calculated, assuming strictly laminar flow, then it is quite clear that in the conventional case the reduction of the hydraulic diameter by 0.1% does not reveal a major pressure drop increase. In fact, an increase of 0.4% is, in most cases, below the measurement resolution.
	Fig. 2: SEM pictures of micro channels manufactured by laser machining (2a, top), wet chemical etching (2b, middle) and precision milling (2c, bottom). Obviously the parameters for laser machining have not been chosen correctly.
	For the micro scale capillary, the hydraulic diameter is reduced by 10% - which results in an increase of the pressure drop by 52.5%.
	However, surface roughness is unavoidable, it can be taken into account when designing microstructure devices to use, e.g., structural dimensions slightly larger than those really needed to avoid effects like the one described above.
	Of higher importance is the manufacturing precision, i.e. the tolerances that can be obtained by the technique considered. Tolerances in the dimensions of microstructures can have a large influence on the distribution of the fluid in the microstructure system. An example explains this in greater detail:
	Assuming two micro channels C1 and C2, laying directly beneath each other. For channel C1, the hydraulic diameter is given by dh. The hydraulic diameter of the other channel C2 should be the same, but is, due to manufacturing tolerances, reduced by a fraction of x (taken in %). Assuming laminar flow through both micro channels, the pressure drop p1 or p2, respectively, can be calculated for each of them. Building the ratio between those two pressure drop values leads to a result which is free of fluid parameters but only depending on the ratio of the hydraulic diameters. It is given in eq. (2).
	    (2)
	It is quite obvious from this equation that the pressure drop in the smaller channel C2 is much higher than that in the larger one – the difference follows a calculation law to the fourth power! This will, of course, lead to deviations in the mass flow per channel as well as in the fluid distribution of the complete micro system [4]. Moreover, variables like reaction rate, heat transfer, temperature distribution and generation of hot spots or cold spots are influenced more or less strongly.
	However, the generation of hot spots or uneven temperature or flow distribution can be highly influenced by design of the microstructure devices.
	2.3 Design influences
	The design of microstructure devices can have large influence on the distribution of temperature as well as that of the fluid. Related to those, mass and energy transfer are influenced to a major extent. This will be shown by two examples.
	2.3.1 Micro heat exchanger design
	Micro heat exchangers of different design can be obtained for numerous applications. Most common designs are crossflow devices and countercurrent or co-current flow devices. The difference in both designs seems not to be very large, but the difference in the integral outlet temperature is reasonable [5].
	Figure 3 shows an example of a crossflow microstructure heat exchanger. Fig. 3a gives an inside view of the micro channel system, while Fig. 3b shows the full device.
	Figure 4a shows a single micro channel foil for a countercurrent / co-current flow heat exchanger, while in Figure 4b a complete device is presented. The device can be used for both flow methods, countercurrent and co-current flow. The flow mode simply depends on the application of the fluids to the inlet and outlet fittings.
	The devices given in Figure 3 and 4 are manufactured from stainless steel, assembled and bonded by diffusion bonding. A detailed description of the manufacturing processes can be found in [5, 6, 7].
	It is well known from conventional devices that the temperature behavior is different for the flow modes obtained in the devices. A similar, but more visible trend can be obtained with microstructure devices. The plots in Figure 5 a- c give an overview of the possibility of controlling the integral outlet temperature behavior by simply changing the configuration of the microstructure device.
	All data shown in the plots have been obtained by experiments using water in both liquid passages. Temperatures at the inlet and the outlet have been measured with PT100 temperature sensors, installed in the center of the adapter fitting to the respective inlet or outlet, keeping a distance of about two centimeters to the microstructures. In the figures, the inlet and outlet temperatures for three configurations, crossflow, countercurrent and co-current flow, are plotted against the Reynolds number Re.
	Fig. 3: Crossflow micro channel arrangement (Fig. 3a, left), crossflow micro heat exchanger (Fig. 3b, right).
	Figure 4a shows the results of the crossflow heat exchanger. A crossing-over of the temperatures is obvious at a Reynolds number of about 150. The final temperature difference of the streams at outlet reaches a maximum of 20K.
	For a countercurrent configuration, the temperature crossing is reached at a much higher Reynolds number of about 300, and the outlet temperature difference is much smaller, reaching only about 10K (see Figure 5b). Finally, in co-current flow configuration, there is no crossing of the outlet temperatures anymore. They will run into saturation and meet somewhere more or less precisely, which could not obtained here due to some pressure drop limitations. Knowing the temperature plots, it is relatively easy to control the temperature behavior of a process by simply choosing the flow configuration best suited for it.
	Fig. 4: Countercurrent / co-current flow micro channel arrangement (Fig. 4a, left), countercurrent / co-current micro heat exchanger (Fig. 4b, right).
	Even stronger influences can be obtained by changing the integrated microstructure [8]. Examples for the microstructures to be integrated in such devices are given in Figure 6. In crossflow configuration, changing  from an array of linear micro channels to a linear arrangement of micro columns or to a staggered arrangement of micro columns (see Figure 6 top left, bottom left, bottom middle) shows a shift of the temperature behavior to high Reynolds numbers, as can be seen in Figure 7 as well as in Figure 8. As it is presented in Figure 8, it may result the temperature behavior of a crossflow device being similar to that of a co-current flow device.
	While the temperature behavior is just shifted by changing the integrated microstructure design, the pressure drop behavior is very different, as shown in Figure 9. Here, the pressure drop is plotted against the cold water mass flow for three different microstructure heat exchangers in crossflow mode, namely long linear micro channels, a linear arrangement of micro columns and a staggered arrangement of micro columns. 
	Figure 10 shows the overall heat transfer coefficient obtained for the same three configurations and as a function of pressure drop.
	From this it is obvious that it might be useful to have variations in the microstructure design. At first sight, the increased pressure drop (as shown in Figure 9) may be a major drawback for some devices. However, the increase in the overall heat transfer coefficient as shown in Figure 10 is substantial. Thus, depending on the application, it might be worth looking more closely at such a design and to apply it where it shows advantages. In fact, an attempt should be made to combine together low pressure drop and high overall heat transfer coefficients together. This can be achieved by a very careful change of the integrated microstructure, as shown in [8].
	Fig. 5: Integral inlet and outlet temperatures of micro heat exchangers in different flow configurations, plotted against the Reynolds number Re. 5a (top): Crossflow mode; 5b (middle): Countercurrent flow mode; 5c (bottom): Co-current flow mode.
	2.3.2 Microstructure evaporators
	Phase transition in microstructures is a process very sensitive to many parameters, including applied mass flow, temperature distribution, applied thermal power, surface quality and design of the microstructures and some others more.
	Fig. 6: Different microstructure arrangements manufactured in stainless steel.
	Fig. 7: Temperature plotted vs. Reynolds number for a linear arrangement of micro columns in a crossflow micro heat exchanger. The plot shows a detailed view to the crossing over of the outlet temperature at high Re.
	In most cases, microstructure evaporators are designed using parallel arrangements of numerous micro channels providing dimensions large enough to obtain full evaporation [9, 10]. The most critical dimension here is the length of the micro channels, which can not be predicted precisely. Thus, in most cases very long micro channels are used to provide a residence time sufficiently high for full evaporation. This leads to an increased pressure drop and to undesired side effects like superheating of steam.
	A parameter often neglected is the flow distribution at entry to the evaporation channels. Some authors considered improving the flow distribution for single phase flows [11, 12, 13]. Moreover, it could be shown that the design of the flow distributor at the inlet of a micro channel array has a major influence on the phase transition [14]. 
	Fig. 8: Temperature plotted vs. Reynolds number for a staggered arrangement of micro columns in a crossflow micro heat exchanger. There might be a crossing over of the outlet temperatures at high Re, but this could not be achieved.
	Fig. 9: Pressure drop plotted vs. cold water massflow for three different crossflow micro heat exchangers [8]. 
	Fig. 10: Overall heat transfer coefficient plotted vs. pressure drop for three different crossflow micro heat exchangers [8].
	Figure 11 shows three possible flow distribution systems for a micro channel array: a plain slit (top left), a triangular void (top right) and a tree-like branched system (middle). The SEM picture at the bottom shows a detail of the branch system.
	The hydraulic diameter of the single branches of the latter system have been calculated according to the principle of minimum work (Murray’s law, [15]). Hence, the ratio between the hydraulic diameter of an inlet branch dh1 and the following up split branch dh2 is given by
	    (3)
	Easy pre-calculations under the assumption of ideal flow paths for the three different systems shown in Fig. 11 give an idea on the shape of the phase transition frontline generated inside the micro channel array. Figure 12 shows the channel number plotted vs. inverse residence time of the fluid for the slit, compared to a photo of the phase transition. It is clear that the two pictures correspond very well.
	Using a triangular flow distribution system, the residence time across the micro channels will form a parabolic shape. This can be seen also in the shape of the phase transition line while evaporation takes place, as given in Figure 13.
	Finally, if the tree-like branch flow distributor system is applied, the residence time should be the same in all micro channels of the array, resulting in a phase transition line perpendicular to the flow direction. However, due to manufacturing tolerances and three-dimensional steps in the real microstructure branching system (see Fig. 11), a phase transition area is reached, with a frontline more or less perpendicular to the flow direction. The respective result is shown in Figure 14.
	3. Summary
	Microscale devices can provide intensification options for processes by using the increased specific surface area, improved heat and mass transfer and other options. 
	However, such devices have to be designed and manufactured with much more care than at the macro scale. Effects like roughness or manufacturing tolerances have a large influence on the flow behavior as well as on the process. Some examples have been used to show this in overview style.
	Fig. 11: Different flow distributors for micro channel array evaporators [14, 16].
	Fig. 12: Inverse residence time plot (left), phase transition line shape (right) for a slit flow distributor.
	Fig. 13: Inverse residence time plot (left), phase transition line shape (right) for a triangular flow distributor.
	Fig. 14: Inverse residence time plot (left), phase transition line shape (right) for a tree-like flow distributor according to [15].
	Nomenclature
	D  diffusion coefficient [m2/s]
	dh  hydraulic diameter [m]
	p  pressure [MPa]
	tM  mixing time [s]
	x  length, position [m]
	  difference [-]
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