2,385 research outputs found

    Texture Synthesis Through Convolutional Neural Networks and Spectrum Constraints

    Full text link
    This paper presents a significant improvement for the synthesis of texture images using convolutional neural networks (CNNs), making use of constraints on the Fourier spectrum of the results. More precisely, the texture synthesis is regarded as a constrained optimization problem, with constraints conditioning both the Fourier spectrum and statistical features learned by CNNs. In contrast with existing methods, the presented method inherits from previous CNN approaches the ability to depict local structures and fine scale details, and at the same time yields coherent large scale structures, even in the case of quasi-periodic images. This is done at no extra computational cost. Synthesis experiments on various images show a clear improvement compared to a recent state-of-the art method relying on CNN constraints only

    A Compact Representation of Random Phase and Gaussian Textures

    Get PDF
    In this paper, we are interested in the mathematical analysis of the micro-textures that have the property to be perceptually invariant under the randomization of the phases of their Fourier Transform. We propose a compact representation of these textures by considering a special instance of them: the one that has identically null phases, and we call it ''texton''. We show that this texton has many interesting properties, and in particular it is concentrated around the spatial origin. It appears to be a simple and useful tool for texture analysis and texture synthesis, and its definition can be extended to the case of color micro-textures

    A survey of exemplar-based texture synthesis

    Full text link
    Exemplar-based texture synthesis is the process of generating, from an input sample, new texture images of arbitrary size and which are perceptually equivalent to the sample. The two main approaches are statistics-based methods and patch re-arrangement methods. In the first class, a texture is characterized by a statistical signature; then, a random sampling conditioned to this signature produces genuinely different texture images. The second class boils down to a clever "copy-paste" procedure, which stitches together large regions of the sample. Hybrid methods try to combine ideas from both approaches to avoid their hurdles. The recent approaches using convolutional neural networks fit to this classification, some being statistical and others performing patch re-arrangement in the feature space. They produce impressive synthesis on various kinds of textures. Nevertheless, we found that most real textures are organized at multiple scales, with global structures revealed at coarse scales and highly varying details at finer ones. Thus, when confronted with large natural images of textures the results of state-of-the-art methods degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe FRAME. New method presented: CNNMR

    Effect of methyl groups on the thermal properties of polyesters from methyl substituted 1,4-butanediols and 4,4'-biphenyldicarboxylic acid

    Get PDF
    Results are reported on the effect of lateral methyl groups on the thermal properties of a series of polyesters prepared from diethyl 4,4-biphenyldicarboxylate and various methyl substituted 1,4-butanediols. The diols were 1,4-butanediol; 2-methyl-1,4-butanediol; 2,2-dimethyl-1,4-butanediol; 2,3-dimethyl-1,4-butanediol; 2,2,3-trimethyl-1,4-butanediol; and 2,2,3,3-tetramethyl-1,4-butanediol. Apart from the tetramethyl derivatve, the transition temperatures of the methyl substituted polyesters were lower with respect of the unsubstituted polyester. On the basis of polarized photomicrographs, a smectic A mesophase was found for the unsubstituted polyester, whereas a nematic mesophase was observed for the 2-methyl substituted polyster. The 2,2-dimethyl, 2,3-dimethyl, and the 2,2,3-trimethyl substituted polyesters showed no liquid crystalline behavior. The 2,2,3,3-tetramethyl derivative displayed a birefringent melt phase although the DSC measurements were not unambiguous. A copolyester based on diethyl 4,4-biphenyldicarboxylate, 1,4-butanediol, and 2,2,3,3-tetramethyl-1,4-butanediol showed a broad nematic mesophase. Further evidence for the nematic mesophase of this copolyester and the 2-methyl substituted polyester was provided by dynamic rheological experiments. Based on thermogravimetric analysis, it was concluded that the thermal stability was affected only when four methyl side groups were present in the spacer

    Learning to Generalize over Subpartitions for Heterogeneity-aware Domain Adaptive Nuclei Segmentation

    Full text link
    Annotation scarcity and cross-modality/stain data distribution shifts are two major obstacles hindering the application of deep learning models for nuclei analysis, which holds a broad spectrum of potential applications in digital pathology. Recently, unsupervised domain adaptation (UDA) methods have been proposed to mitigate the distributional gap between different imaging modalities for unsupervised nuclei segmentation in histopathology images. However, existing UDA methods are built upon the assumption that data distributions within each domain should be uniform. Based on the over-simplified supposition, they propose to align the histopathology target domain with the source domain integrally, neglecting severe intra-domain discrepancy over subpartitions incurred by mixed cancer types and sampling organs. In this paper, for the first time, we propose to explicitly consider the heterogeneity within the histopathology domain and introduce open compound domain adaptation (OCDA) to resolve the crux. In specific, a two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels. The holistic design addresses the limitations of existing OCDA approaches which struggle to capture instance-wise variations. Two regularization strategies are specifically devised herein to leverage the rich subpartition-specific characteristics in histopathology images and facilitate subdomain decomposition. Moreover, we propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images. Experimental results on both cross-modality and cross-stain scenarios over a broad range of diverse datasets demonstrate the superiority of our method compared with state-of-the-art UDA and OCDA methods

    Intelligent facial emotion recognition using moth-firefly optimization

    Get PDF
    In this research, we propose a facial expression recognition system with a variant of evolutionary firefly algorithm for feature optimization. First of all, a modified Local Binary Pattern descriptor is proposed to produce an initial discriminative face representation. A variant of the firefly algorithm is proposed to perform feature optimization. The proposed evolutionary firefly algorithm exploits the spiral search behaviour of moths and attractiveness search actions of fireflies to mitigate premature convergence of the Levy-flight firefly algorithm (LFA) and the moth-flame optimization (MFO) algorithm. Specifically, it employs the logarithmic spiral search capability of the moths to increase local exploitation of the fireflies, whereas in comparison with the flames in MFO, the fireflies not only represent the best solutions identified by the moths but also act as the search agents guided by the attractiveness function to increase global exploration. Simulated Annealing embedded with Levy flights is also used to increase exploitation of the most promising solution. Diverse single and ensemble classifiers are implemented for the recognition of seven expressions. Evaluated with frontal-view images extracted from CK+, JAFFE, and MMI, and 45-degree multi-view and 90-degree side-view images from BU-3DFE and MMI, respectively, our system achieves a superior performance, and outperforms other state-of-the-art feature optimization methods and related facial expression recognition models by a significant margin
    • …
    corecore