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a b s t r a c t 

In this research, we propose a facial expression recognition system with a variant of evolutionary fire- 

fly algorithm for feature optimization. First of all, a modified Local Binary Pattern descriptor is proposed 

to produce an initial discriminative face representation. A variant of the firefly algorithm is proposed to 

perform feature optimization. The proposed evolutionary firefly algorithm exploits the spiral search be- 

haviour of moths and attractiveness search actions of fireflies to mitigate premature convergence of the 

Levy-flight firefly algorithm (LFA) and the moth-flame optimization (MFO) algorithm. Specifically, it em- 

ploys the logarithmic spiral search capability of the moths to increase local exploitation of the fireflies, 

whereas in comparison with the flames in MFO, the fireflies not only represent the best solutions iden- 

tified by the moths but also act as the search agents guided by the attractiveness function to increase 

global exploration. Simulated Annealing embedded with Levy flights is also used to increase exploitation 

of the most promising solution. Diverse single and ensemble classifiers are implemented for the recogni- 

tion of seven expressions. Evaluated with frontal-view images extracted from CK + , JAFFE, and MMI, and 

45-degree multi-view and 90-degree side-view images from BU-3DFE and MMI, respectively, our system 

achieves a superior performance, and outperforms other state-of-the-art feature optimization methods 

and related facial expression recognition models by a significant margin. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

Facial expression recognition, which plays an important role 

in pattern recognition, computer vision, and human computer in- 

teraction, is widely used in personalised healthcare, video games, 

surveillance systems, humanoid service robots, and multimedia. In 

recent studies, many algorithms focusing on face recognition, gen- 

der and age estimation, and facial emotion classification have been 

developed. However, high dimensionality is still a challenging issue 

for such applications. Although many feature dimensionality re- 

duction techniques have been proposed, it is still difficult to iden- 

tify the most significant discriminating features that best represent 

within and between class variances for emotional facial expression. 

In this research, we propose a facial emotion recognition sys- 

tem with a variant of evolutionary firefly algorithm for feature op- 

timization. The main aim of the proposed system is to identify 
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the most significant discriminative characteristics for each emo- 

tion category, in an attempt to address the above challenges. It 

integrates the spiral search behaviour of the moths, attractiveness 

search actions of the fireflies, and Simulated Annealing (SA) em- 

bedded with the Levy flights to increase local exploitation and 

global exploration and, at the same time, mitigate the prema- 

ture convergence problem of the Levy-flight firefly algorithm (LFA) 

[1] and the moth-flame optimization (MFO) algorithm [2] . 

The proposed system is composed of three key steps, as il- 

lustrated in Fig. 1 . Firstly, a novel texture descriptor is proposed, 

which incorporates the use of Local Binary Patterns (LBP), Local 

Gabor Binary Patterns (LGBP), and LBP variance (LBPV) [3] to cap- 

ture local spatial patterns and contrast measures of local texture 

to retrieve an initial discriminative facial representation. Secondly, 

the proposed variant of the firefly optimization algorithm is used 

to identify the most significant and discriminative features of each 

emotion category. Thirdly, single and ensemble classifiers are used 

for recognizing seven expressions (happiness, fear, disgust, sur- 

prise, sadness, anger, and neutral) based on the derived optimal 

feature subsets. Evaluated with frontal-view images from CK + [4] , 

MMI [5] and JAFFE [6] , and 45-degree multi-view and 90-degree 
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Fig. 1. The system architecture. 

side-view images from BU-3DFE [7] and MMI, respectively, the em- 

pirical results indicate that our system shows a superior perfor- 

mance, and outperforms other state-of-the-art optimization meth- 

ods and related facial expression recognition models by a signifi- 

cant margin. 

The contributions of this research are summarized as follows. 

1. A novel texture descriptor incorporating LBP, LGBP, and LBPV 

is proposed to derive an initial discriminative facial representa- 

tion. The proposed descriptor is able to extract spatial patterns 

and contrast measures of each image region for facial analysis, 

in order to better deal with illumination changes, rotations, and 

scaling differences. The empirical findings indicate that it out- 

performs conventional texture descriptors for facial expression 

recognition. 

2. A LFA variant, known as M-LFA, is proposed for feature opti- 

mization. It explores the spiral search behaviour of the moths 

and attractiveness search actions of the fireflies to mitigate 

the premature convergence problem of the conventional LFA 

and MFO models. Specifically, it employs the logarithmic spiral 

search of the moths to increase local exploitation of the fire- 

flies. In comparison with the flames in MFO, the fireflies not 

only represent the best solutions identified by the moths, but 

also act as the search agents guided by the attractiveness func- 

tion to cause sudden movements of the fireflies and associated 

moths to increase global exploration. Therefore, it increases lo- 

cal exploitation of LFA and global exploration of MFO to guide 

the search process towards global optima. SA-embedded Levy 

flights diversification is also used to further improve local ex- 

ploitation of the identified current global best solution. Overall, 

the proposed strategies work cooperatively to avoid premature 

stagnation while guiding the search process towards global op- 

tima. 

3. Evaluated with frontal-view images extracted from CK + , MMI, 

and JAFFE databases and multi-view and side-view images from 

BU-3DFE and MMI, respectively, the empirical results indicate 

that the proposed system shows superior capabilities of find- 

ing local and global optima simultaneously, and outperforms 

a number of conventional and state-of-the-art metaheuristic 

search methods such as Particle Swarm Optimization (PSO), Ge- 

netic Algorithm (GA), MFO, LFA, and other PSO and firefly al- 

gorithm (FA) variants, non-evolutionary feature selection algo- 

rithms, as well as other related facial expression recognition 

models reported in the literature by a significant margin. 

The paper is organised in the following way. The related work 

on facial expression recognition and state-of-the-art feature opti- 

mization techniques are discussed in Section 2 . Section 3 describes 

the key stages of the proposed system, which include facial fea- 

ture extraction using the proposed LBP descriptor in Section 3.1 , 

and the proposed M-LFA algorithm for feature optimization in 

Section 3.2 . Section 4 presents the evaluation of the proposed 

system using frontal-view images extracted from CK + , MMI, and 

JAFFE and multi-view and side-view images from BU-3DFE and 

MMI, respectively. Section 5 presents some concluding remarks 

of this research, and identifies a number of directions for further 

work. 

2. Related work 

In this section, we review state-of-the-art research on evolu- 

tionary feature optimization and facial expression recognition. 

2.1. Facial expression recognition 

Many facial expression recognition applications have been pro- 

posed recently. Zhang et al. [8] proposed a multimodal learning 

method to learn the joint representation from texture and land- 

mark modalities of facial images. A structured regularization (SR) 

in combination with an auto-encoder was proposed in their work 

to learn sparsity and density from each modality to generate the 

joint representation. Feature extraction and classification were also 

combined together in their proposed model. The proposed method 

was also capable of dealing with expression recognition tasks with 

head pose variations. Evaluated with CK + and NVIE databases, the 

work showed superiority over other methods. Ali et al. [9] pro- 

posed a facial expression recognition system with empirical mode 

decomposition (EMD) based feature extraction. The EDM method 

decomposed 1-D facial signal into a set of intrinsic mode functions 

(IMFs), in which the first IMF was considered as facial features 

for expression classification. Their work employed three feature di- 

mensionality reduction techniques, i.e., Principal Component Anal- 

ysis (PCA) with Linear Discriminant Analysis (LDA), PCA with Local 

Fisher Discriminant Analysis (LFDA), and Kernel LFDA (KLFDA), to 

perform optimization of the extracted EMD-based features. Several 

classifiers including the Extreme Learning Machine with Radial Ba- 

sis Function (ELM-RBF) were used to classify seven facial expres- 

sions. JAFFE and CK + databases were employed for system evalua- 

tion. Shojaeilangari et al. [10] proposed a spatio-temporal descrip- 

tor named Histogram of Dominant Phase Congruency (HDPC) for 

facial expression recognition from video sequences. This proposed 

descriptor extended the phase congruency concept to 3D, and in- 

corporated histogram binning to describe both motion and appear- 
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ance based features. The experimental results indicated that the 

proposed system was capable of dealing with expression recogni- 

tion tasks with scaling variations and illumination changes. Eval- 

uated with CK + and AVEC 2011 video sub-challenge, the work 

showed impressive performance in terms of robustness and accu- 

racy. 

Siddiqi et al. [11] proposed a facial expression recognition sys- 

tem that applied a stepwise linear discriminant analysis (SWLDA) 

for feature extraction and the hidden conditional random fields 

(HCRFs) model for expression recognition. In their work, facial ex- 

pressions were divided into three categories, i.e. lips-based, lips- 

eyes-based, and lips-eyes-forehead-based. The first step was to use 

SWLDA and HCRF to classify an input image into one of the three 

categories. Secondly, SWLDA and HCRF trained only for a partic- 

ular category were used to determine an emotion label. Evalu- 

ated with CK + , JAFFE, MMI and Extended Yale B Face datasets, the 

work achieved significant improvement on recognition accuracy, 

but with expensive computational costs. Neoh et al. [12] proposed 

a facial expression system with direct similarity and Pareto-based 

feature optimization. The former was integrated with the concept 

of micro GA to identify feature subsets that could represent the 

common features of each expression. The latter took both within 

and between class variations into account for multi-objective fea- 

ture optimization. Integrated with diverse ensemble classifiers, 

the work achieved impressive performances when tested with 

CK + and MMI. The Pareto-based approach was also proven to be 

more efficient in dealing with challenging feature optimization for 

frontal and side-view images. Zhang et al. [13] conducted real- 

time 3D facial Action Unit (AU) intensity estimation and expres- 

sion recognition. Their work employed the minimal-redundancy- 

maximal-relevance (mRMR) criterion to identify a set of 16 feature 

subsets among the initially extracted raw facial features, which 

were then used to estimate the intensities of 16 diagnostic AUs. 

A novel ensemble classifier was integrated with a clustering algo- 

rithm for classification of six universal facial expressions and de- 

tection of newly arrived, unseen novel emotion classes (those not 

included in the training dataset). In their work, a distance-based 

clustering method and the uncertainty measures of the base clas- 

sifiers within each ensemble were used for novel class detection. 

Evaluated using the Bosphorus 3D database and real human sub- 

jects, the system achieved impressive performances for identifica- 

tion of six emotions and novel unseen expressions. 

2.2. Feature selection and optimization algorithms 

Evolutionary algorithms have been widely employed for fea- 

ture optimization because of their impressive search capabilities 

[14,15] . In this section, we discuss state-of-the-art evolutionary fea- 

ture optimization algorithms, which include the most popular con- 

ventional search algorithms such as PSO, GA, and SA, and other 

hybrid models. 

2.2.1. Genetic algorithm 

Motivated by the Darwinian principle of ‘survival of the fittest’, 

the GA was developed by Holland [16] . It employs three evolution- 

ary operators, i.e. crossover, mutation, and selection. The crossover 

operator generates two offspring by exchanging part of a chro- 

mosome with the corresponding part of another. We employ the 

single-point crossover operator in this research. The mutation op- 

erator randomly changes one or more bits of an offspring chro- 

mosome in order to produce new genetic characteristics. Selec- 

tion ensures the highest quality chromosomes will be selected 

and propagated to the next generation to enhance the conver- 

gence property of the algorithm. Crossover helps local exploita- 

tion to enhance convergence, while mutation brings search diver- 

sity and increases global exploration. According to theoretical stud- 

ies, a higher crossover probability in the range of [0.6, 0.95] and 

a lower mutation probability in the range of [0.001, 0.05] are usu- 

ally recommended. These settings enable a higher level of local ex- 

ploitation and a lower degree of global exploration to reach global 

optimality [14] . 

2.2.2. Particle swarm optimization 

Motivated by swarm behaviours such as bird flocking and fish 

schooling, PSO was proposed by Kennedy and Eberhart [17] . In 

PSO, a number of particles move in the search space by following 

the swarm leader, in order to find the optimal solutions. It records 

the best position ever achieved by a particle as the personal best, 

p_best , and the best position of the overall swarm as the global 

best, g_best . PSO employs the following strategies for updating the 

position and velocity of each particle. 

x t+1 
id 

= x t id + v 
t+1 
id 

(1) 

v 
t+1 
id 

= w × v 
t 
id + c 1 × r 1 ×

(

p id − x t id 
)

+ c 2 × r 2 ×
(

p gd − x t id 
)

(2) 

where x t+1 
id 

and v t+1 
id 

represent the position and velocity of each 

particle in the ( t + 1) th iteration in the d th dimension, respectively. 

An inertia weight, w , is also introduced to adjust the effects of the 

previous velocity to the current one. Moreover, p id and p gd repre- 

sent the personal best ( p_best) and global best ( g_best ) in the d th 

dimension, respectively. c 1 and c 2 denote the learning parameters 

or acceleration constants, whereas r 1 and r 2 indicate two random 

parameters between [0, 1]. 

Overall, PSO is a widely used swarm-based algorithm owing to 

its simplicity and flexibility. However it has limited exploration ca- 

pability, and tends to be trapped in local optima [14] . 

2.2.3. Simulated annealing 

Proposed by Kirkpatrick et al. [18] , SA simulates the annealing 

process in material processing that usually requires a careful con- 

trol of temperature and its cooling rate. SA has been widely used in 

diverse optimization problems. SA employs a random search tech- 

nique for global exploration. It accepts not only better solutions 

but also those less ideal solutions with a probability, p ,as defined 

in Eq. (3) . 

p = exp 

(

−
� f 

T 

)

> r (3) 

where �f denotes the change of the fitness function between the 

new and previous solutions. T represents the temperature for con- 

trolling the annealing process with r as a random value uniformly 

distributed in [0, 1]. As an example, in a minimization problem, a 

new solution with a higher fitness value than that of the current 

solution will be accepted with probability p 

In SA, the annealing schedule (i.e. the cooling schedule), which 

controls the decreasing rate of the temperature, plays an impor- 

tant role in influencing local exploitation and global exploration. In 

this research, we employ a geometric cooling schedule, i.e. T = αT , 

where the temperature is decreased by a cooling factor α ∈ [0, 1] 

[14] . In practice, SA is able to attain global optimality, but at the 

expense of a high computational cost [14] . 

2.2.4. Variants or hybrid optimization methods 

Xue et al. [19] proposed two PSO-based multi-objective fea- 

ture selection algorithms. The first algorithm incorporated non- 

dominated sorting into PSO (NSPSO) while the second algorithm 

integrated the concepts of crowding, mutation, and dominance 

into PSO (CMDPSO) to address feature optimization problems. They 

compared the performances of both algorithms with those of non- 
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dominated sorting genetic algorithm II (NSGAII), Strength Pareto 

Evolutionary Algorithm2 (SPEA2), Pareto Archived Evolutionary Al- 

gorithms (PAES) on twelve benchmark datasets. The experimen- 

tal results indicated that CMDPSO selected the smallest number 

of features, and outperformed NSPSO, NSGAII, SPEA2, and PAES in 

terms of classification performance and computational efficiency. 

Zhang et al. [15] proposed a PSO variant called GM-PSO to iden- 

tify the most discriminative bodily characteristics from static and 

dynamic motion features for the regression of arousal and va- 

lence dimensions for bodily expression perception. GM-PSO inte- 

grated PSO with GA and mutation techniques of Gaussian, Cauchy, 

and Levy distributions to overcome the premature convergence 

problem of conventional PSO. It outperformed GA, PSO, and other 

PSO variants in selecting the discriminative features and finding 

the global optimum. Goodarzi and Coelho [20] proposed a FA- 

based variable selection method for application to spectroscopy. 

They employed FA, PSO, and GA integrated with partial least 

squares (PLS) for spectroscopic data selection respectively. Eval- 

uated with three spectroscopic datasets, FA identified the small- 

est number of wavelengths while maintaining a similar predic- 

tion performance. Alweshah and Abdullah [21] proposed two hy- 

brid FA methods to optimize the weights of a probabilistic neural 

network (NN) to improve its classification performance. The first 

method integrated FA with SA (SFA), where SA was used to im- 

prove the final solution of FA. The second method combined SFA 

with Levy flights (LSFA) to further improve the global best solution. 

Tested with eleven benchmark datasets, LSFA outperformed SFA 

and LFA, and achieved impressive classification accuracy. Verma 

et al. [22] proposed a modified FA incorporating opposition-based 

and dimensional-based methodologies, known as ODFA, to deal 

with high dimensional optimization problems. The proposed ODFA 

model used opposition-based learning to perform initialization of 

the candidate solutions by including initialization of the opposite 

position of each firefly. It also employed the dimensional-based 

method to update the position of the global best firefly along 

each dimension. Evaluated with multidimensional standard func- 

tions, OFDA outperformed FA, PSO, and Differential Evolution (DE) 

significantly. 

There are also other hybrid or modified FA algorithms that 

deal with diverse engineering optimization problems. As an exam- 

ple, Coelho et al. [23] proposed a modified FA model combined 

with chaotic maps to improve the convergence rate of the origi- 

nal FA model for solving reliability-redundancy optimization prob- 

lems. Yang [1] proposed a Levy-flight Firefly Algorithm (i.e. LFA) 

to increase global exploration, which outperformed classical search 

algorithms such as PSO and GA. Abdullah et al. [24] proposed a 

hybrid FA model by combining FA with DE for high dimensional 

and nonlinear biological parameter optimization. A multi-objective 

FA model was also proposed by Arsuaga-Ríos and Vega-Rodríguez 

[25] by adding multi-objective properties into classical FA to deal 

with workload scheduling problems for minimizing energy con- 

sumption in grid computing. Kazem et al. [26] proposed a chaotic 

FA model that combined chaos theory with FA to identify optimal 

hyper-parameter settings of Support Vector Regression (SVR) for 

stock market price forecasting. Instead of randomly generating the 

initial population, the chaotic mapping operator (CMO) was used 

to produce the initial swarm to increase population diversity. Fire- 

flies with a lower light intensity employed a chaotic movement 

to move towards those with a higher light intensity. Especially, 

the firefly with the highest light intensity purely used the chaotic 

movement, rather than a random walk behaviour, for exploring 

the search space. In comparison with GA-based SVR, chaotic GA- 

based SVR, FA-based SVR, NN, and the adaptive neuro-fuzzy infer- 

ence system, chaotic FA outperformed these related methods in the 

evaluation of several most challenging stock market datasets from 

NASDAQ. 

3. The proposed facial expression recognition system 

In this section, we introduce the proposed facial expression 

recognition system, which includes a new LBP descriptor for fea- 

ture extraction, a new M-LFA algorithm for feature optimization, 

as well as single and ensemble classifiers for facial emotion recog- 

nition. 

3.1. Feature extraction using the proposed LBP descriptor 

We propose a new texture descriptor, which combines LBP, 

LGBP, and LBPV, for feature extraction, in order to better deal with 

illumination changes, rotations, and scaling differences. The pro- 

posed LBP variant descriptor combines the discriminative capabil- 

ities of LBP, LGBP, and LBPV, and depicts great efficiency in ex- 

tracting discriminative spatial patterns and contrast information 

for texture classification. 

Proposed by Ojala et al. [27] , LBP is a well-known texture de- 

scriptor. The basic idea of LBP is to threshold each group of 3 ×3 

neighbouring pixels against the centre pixel to generate a sequence 

of binary outputs. It has been further extended to use various 

numbers of circular neighbouring pixels. The LBP descriptor can 

be denoted as LBP s,r , where s is the number of sampling points 

in the neighbourhood and r is the radius. The advantage of LBP is 

its invariance to monotonic gray-scale changes. LBP is efficient in 

extracting rotation invariant texture features from a local region. 

However, its drawback is loss of neighbourhood contrast and global 

information for texture description. LGBP [28] combines Gabor fil- 

ters with LBP to improve the discriminative capability of LBP. It has 

excellent representation and discriminating power of spatial infor- 

mation of the face, and shows great robustness in dealing with il- 

lumination changes, misalignment, and scaling differences. 

Introduced by Guo et al. [3] , LBPV is a rotation invariant de- 

scriptor that focuses on exploiting local contrast information to 

further improve the discriminative capability of LBP. It combines 

two aspects of complementary texture information, i.e. local spa- 

tial structure extracted by LBP and the contrast, and generates a 

simplified joint representation. Specifically, the rotation invariant 

contrast measure (i.e. the variance of local image texture (VAR)) 

is calculated from a local region, and used as an adaptive weight 

to fine tune the impact of the LBP code to generate histograms. 

Therefore, enriched with contrast measures, LBPV possesses more 

robustness and discriminative capability than that of LBP for tex- 

ture classification. It also has efficient computational complexity, 

and possesses the same feature dimensions as those of LBP. When 

pairing with global matching mechanisms, LBPV is able to outper- 

form more complex, state-of-the-art joint LBP and contrast distri- 

bution descriptors such as LBP/VAR. 

In this research, we combine the above three well-known tex- 

ture descriptors to gain additional discriminating power to im- 

prove texture classification and better deal with rotations, illumi- 

nation, and scaling differences. Moreover, the proposed LBP vari- 

ant employs a three-parent crossover scheme for histogram gen- 

eration. First of all, each of the three descriptors is applied to 

a gray-scale input image with a size of 75 ×75. The three tex- 

ture descriptors generate a binary pattern for each sub-region of 

the test image, respectively. To combine the output patterns, a 

three-parent crossover scheme is applied, i.e., an offspring is de- 

rived from three parents. Because of the impressive discriminat- 

ing capabilities of LBPV and LGBP in comparison with that of LBP, 

LBPV and LGBP are selected as the dominating parents, whereas 

LBP is used a reference parent to supply basic reference informa- 

tion when LBPV and LGBP disagrees. The proposed descriptor com- 

pares each bit of the first parent pattern generated by LBPV with 

the corresponding bit of the second parent generated by LGBP. If 

they are the same, this bit is inherited by the offspring. Other- 
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wise, the corresponding reference bit from the third parent gen- 

erated by LBP is inherited by the offspring. As an example, sup- 

pose the 1st parent (generated by LBPV) = 11,010,001, the 2nd par- 

ent (produced by LGBP) = 0,110,0100, and the 3rd parent (obtained 

from LBP) = 11,011,010. After applying the three-parent crossover, 

the newly generated offspring is 11,010,0 0 0. Moreover, it is worth 

to point out that although the differences between the results ob- 

tained by the proposed LBP descriptor and the three baseline de- 

scriptors (e.g. LBPV) in the above example are minor, they are ob- 

tained from a small local region of 3 ×3. These differences could 

increase drastically to 625 (25 ×25) histograms when an image 

with a size of 75 ×75 is used. In comparison with the parent pat- 

terns, the experimental results indicate that the newly generated 

offspring possesses more discriminative capabilities. Evaluated us- 

ing images with illumination and scaling differences derived from 

the CK + database and multi-view and side-view images from BU- 

3DFE and MMI respectively, the proposed LBP operator shows su- 

perior performance, and outperforms the above three baseline de- 

scriptors significantly in a number of diverse test cases. Detailed 

evaluation results are provided in Section 4.1 . Overall, the proposed 

descriptor is more capable of retrieving discriminative facial fea- 

tures such as edges and corners, and shows great robustness and 

efficiency in dealing with images with low contrast ratios. 

3.2. Background and the proposed feature optimization algorithm 

In this section, we introduce the proposed M-LFA algorithm for 

feature optimization. To provide the necessary background infor- 

mation, the original FA, LFA and MFO models are first introduced, 

as follows. 

3.2.1. Firefly algorithm 

Proposed by Yang in 2008 [14] , FA is a nature inspired 

population-based metaheuristic search algorithm. FA applies the 

following three principles in its search process. Firstly, all fireflies 

are unisex, with one attracted to all others. Secondly, attractiveness 

is proportional to the brightness of a firefly. Therefore, the firefly 

with less brightness moves towards the one with stronger illumi- 

nations. If no brighter fireflies exist, a random walk behaviour is 

conducted. Thirdly, the light intensity of each firefly denotes the 

solution quality. Studies indicate that FA demonstrates promising 

superiority over other algorithms, such as PSO and GA [14] . 

In FA, the light intensity variation and attractiveness are two 

important aspects. They both decrease as either the distance to the 

light source or the distance between two fireflies increases. They 

also vary with the degree of light absorption. The light intensity 

variation with respect to the distance, r , and media absorption is 

defined in Eq. (4) [14] . 

I = I 0 e 
−γ r (4) 

where I 0 is the original light intensity when r = 0 , while γ denotes 

a fixed light absorption coefficient. 

The attractiveness factor, β( r ), of a firefly is proportional to the 

light intensity, as defined in Eq. (5) [14] . 

β( r ) = β0 e 
−γ r 2 (5) 

where β0 is the initial attractiveness at r = 0 . 

Moreover, the distance between two fireflies i and j is computed 

in accordance with the Cartesian distance, as shown in Eq. (6) . 

r i j = ‖ x i − x j ‖ = 

√ 
d 

∑ 

k =1 

(

x i,k − x j,k 
)2 

(6) 

where x i and x j represent the positions of fireflies i and j , respec- 

tively. x i, k indicates the k th dimension of position x i for the i th 

firefly while d denotes the dimensions of a given problem. 

In conventional FA, randomization is conducted using a Gaus- 

sian or uniform distribution. A Levy-flight Firefly Algorithm (i.e. 

LFA) was also proposed by Yang [1] . Levy flights are used to imple- 

ment randomization to further enhance performance. The move- 

ment of firefly i towards a brighter firefly j is defined in Eq. (7) . 

x i = x i + β0 e 
−γ r 2 

i j 
(

x j − x i 
)

+ α sign 
[ 

rand −
1 

2 

] 

� Levy (7) 

where the second term indicates the movement due to attraction, 

and the third term denotes randomization using Levy flights. Note 

that α is the randomization parameter, while sign [ rand − 1 
2 ] repre- 

sents a random direction with the random step length following a 

Levy distribution, where rand generates a random number in the 

range of [0, 1]. 

In FA and LFA, the light absorption coefficient, γ , plays a very 

important role in characterising attractiveness and determining the 

convergence speed of the algorithms. When γ → 0, attractiveness 

remains constant and the light intensity does not decrease. In this 

case, the behaviours of FA and LFA are very similar to that of PSO, 

where the whole population of individuals is visible in the search 

space, and the global optimum can be easily identified. When γ → 

∞ , attractiveness becomes nearly non-existence, where each firefly 

performs the random walk operation (e.g. Levy flights for LFA and 

Gaussian mutation for FA) without interacting with other individu- 

als in the search space. In this way, FA and LFA are equivalent to a 

random search algorithm such as SA. FA and LFA usually work be- 

tween these two extreme cases, where different fireflies work in- 

dependently to search for the optimal solutions. The experimental 

results indicate that FA and LFA are capable of finding global and 

local optima simultaneously. Studies also indicate that they auto- 

matically divide the population into subgroups, show impressive 

capability of dealing with multimodal optimization problems, and 

outperform PSO and GA in terms of accuracy and computational 

efficiency [1] . 

3.2.2. Moth-flame optimization 

Introduced by Mirjalili [2] , MFO is inspired by the transverse 

orientation navigation behaviours of moths. It possesses local and 

global search capabilities, and is efficient in solving optimization 

problems with constrained and unknown search spaces. In MFO, 

both moths and flames are employed to represent solutions and 

their positions denote the problem variables in the search space. 

Specifically, moths are designated as the search agents to iden- 

tify optimal solutions in the search space, whereas flames are em- 

ployed to indicate the best positions of the moths obtained so far. 

MFO employs a logarithmic spiral function defined in Eq. (8) to 

update the position of a moth [2] . 

S 
(

M i , F j 
)

= D i . e 
bt . cos ( 2 πt ) + F j (8) 

where M i represents the i th moth while F j denotes the j th flame. 

D i = | F j − M i | is the distance between the i th moth and the j th 

flame, while b indicates a constant that defines the shape of the 

logarithmic spiral. t indicates how close the next position of the 

moth is to the flame, which is a value in the range of [-1, 1] 

where -1 and 1 indicate the closest and farthest to the flame, re- 

spectively. The spiral equation is equipped with efficient local and 

global search capabilities. It enables a moth to explore the search 

space, but not necessarily in the space between a moth and a 

flame, and to balance well between local exploration and global 

exploration. In other words, exploration is achieved when the op- 

timal solution is found outside the space between a moth and a 

flame whereas exploitation occurs when the fitter solutions are 

found between them. 

In addition, flames are ranked based on their fitness values in 

each iteration. In order to avoid local optimum and increase global 



L. Zhang et al. / Knowledge-Based Systems 111 (2016) 248–267 253 

exploration, each moth updates its position with respect to a spe- 

cific flame. The best flame is used for updating the position of the 

first moth, whereas the worst flame is employed for updating the 

position of the last moth. Overall, the updated flames are used for 

updating the positions of the moths in each generation, in order to 

explore the search space more effectively. 

To increase local exploitation of the optimal solution vectors, 

the number of flames, f _ no, in MFO is decreased adaptively. Eq. 

(9) defines the operation. 

f _ no. = round 

(

N − m ×
N − 1 

T 

)

(9) 

where m represents the current number of iterations with N and 

T indicating the maximum number of iterations and flames, re- 

spectively. Overall, MFO employs the logarithmic spiral search de- 

fined in Eq. (8) and the flame decrement strategy defined in Eq. 

(9) to balance between global exploration and local exploitation 

to achieve global optimality. It shows superior capabilities of deal- 

ing with multimodal and unimodal optimization functions, as well 

as other challenging optimization problems with unknown search 

spaces [2] . 

3.2.3. The proposed variant of the LFA algorithm 

We propose a variant of the LFA algorithm, which integrates 

LFA with the concept of MFO for discriminative feature optimiza- 

tion. The resulting algorithm is known as M-LFA. The proposed M- 

LFA algorithm benefits from both spiral search behaviour of the 

moths and attractiveness search actions of the fireflies to miti- 

gate the premature convergence problem of the original LFA and 

MFO models. It employs the logarithmic spiral search process of 

the moths to increase local exploitation of the fireflies to avoid 

stagnation. In comparison with the flames in MFO, the fireflies not 

only represent the best solutions identified by the moths, but also 

act as the search agents based on the attractiveness function to 

increase search diversity. Therefore, it increases local exploitation 

of LFA and global exploration of MFO to guide the search process 

towards the global optimum. The identified best solution is also 

further mutated by the SA operation with Levy flights, in order to 

generate an offspring further away from its parent and to increase 

exploitation. Overall, the above mechanisms work in a cooperative 

manner to overcome premature convergence and guide the search 

process towards global optimality. Algorithm 1 illustrates the pro- 

posed M-LFA algorithm. Fig. 2 shows the flowchart of the proposed 

algorithm. 

As illustrated in Algorithm 1 , the proposed M-LFA algorithm 

firstly initializes a population of fireflies and a swarm of moths, 

respectively. Then, the fitness of each moth and each firefly is eval- 

uated using a fitness or objective function, f ( x j ). Two separate ar- 

rays are created to store and rank the corresponding fitness values 

for the fireflies and moths, respectively. This enables preservation 

of the best solutions obtained by the moths and fireflies, respec- 

tively. The next step is to initialize the light intensity of each fire- 

fly, where I j = f ( x j ) , and the constant light absorption coefficient, 

γ . 

As discussed earlier, the main mechanism of the proposed al- 

gorithm consists of two search strategies. The first strategy em- 

ploys the moth spiral concept to improve the exploitation capa- 

bility of the fireflies, while the second strategy employs the attrac- 

tion and attractiveness behaviour of LFA to enable sudden and op- 

timal movement of the fireflies in the search space to diversify the 

search process. The first search strategy is similar to that of MFO, 

where each moth is assigned to a specific firefly that is ranked 

based on the fitness value. Specifically, the first moth is assigned to 

the best firefly, while the last moth is assigned to the worst firefly. 

The sequence of the fireflies is also updated based on the best so- 

lution found by the moths and the attractiveness impact between 

Fig. 2. Flowchart of the proposed M-LFA feature optimization algorithm. 

the fireflies in each generation. Therefore, the strategy requires dif- 

ferent moths to move around different fireflies, which enhances 

global exploration and reduces the probability of premature con- 

vergence. The updated logarithmic spiral movement defined in Eq. 

(10) is used to update a moth’s position with respect to a firefly. 

S 
(

M i , x j 
)

= D 
′ 
i . e 

bt . cos ( 2 πt ) + x j (10) 

where M i represents the i th moth while x j is the position of the 

j th firefly, and D ′ 
i = | x j − M i | represents the distance between the 

i th moth and the j th firefly. In this way, each moth performs a spi- 

ral search around each firefly to exploit its neighbourhood. If the 

solution obtained by the moth has a better fitness, it is used to 

replace the position of the current firefly. Overall, the fireflies are 
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Algorithm 1: Pseudo-code of proposed moth-firefly algorithm. 

1. Start 

2. Initialize a population of moths and a population of fireflies randomly; 

3. Generate two arrays to store the fitness values for moths and fireflies respectively; 

4. Evaluate each moth and each firefly using the fitness/objective function f ( x ); 

5. Set light intensity I = f (x ) and light absorption coefficient γ ; 

6. 

7. Sort fireflies based on their fitness values initially and assign moths accordingly; 

8. While (Stopping criterion is not satisfied)// until it finds the optimal solution or the maximum number of iterations is met. 

9. { 

10. For i = 1 to n do //for each moth attached with each firefly 

11. { 

12. //Using spiral search of moths to guide the search 

13. Update convergence constant and the random number t ; // t parameter controls how close the next position of the moth is to the firefly, e.g. 

-1 is the closest and 1 is the farthest. 

14. Calculate the distance between the i th firefly ( x i ) and the i th moth ( M i ) using D i = | x i − M i | ; 

15. Update the position of the i th moth with respect to the i th firefly using Eq. (10) ; 

16. If (the moth’s solution is better than the firefly) 

17. { 

18. Replace the i th firefly with the i th moth’s solution; 

19. } End If 

20. //Using attractiveness function of fireflies to guide the search 

21. For j = 1 to n do //for all fireflies 

22. { 

23. If ( I j > I i ) 

24. { 

25. Move firefly i towards firefly j using Eq. (7) ; 

26. } End IF 

27. Vary attractiveness with distance r via exp[- γ r 2 ]; 

28. Evaluate new solutions and update the light intensity; 

29. } End For 

30. } End For 

31. Rank the fireflies and find the current global best; 

32. Improve the global best by applying Simulated Annealing embedded with Levy flights; 

33. Reassign the moths based on the updated ranking of fireflies; 

34. } End While 

35. Output optimal solution(s); 

36. End 

updated with the most optimal solutions identified by the moths 

in each iteration. 

In the proposed LFA variant, both moths and fireflies are re- 

garded as the search agents. As such, they move around in the 

search space to search for the optimal solutions. As explained ear- 

lier, each firefly is updated not only by the fitter solutions found by 

the corresponding moths in the neighbourhood, but also moves to- 

wards other more attractive fireflies in the search space. Therefore, 

the second search strategy employs attractiveness and attraction 

action defined in Eq. (7) to move a firefly towards a brighter one, 

in order to increase search diversity. Since the moths perform spi- 

ral movement around the fireflies, and the fireflies move towards 

more attractive ones in each iteration, the second search strategy 

increases global exploration of the moths in MFO. The algorithm 

then updates the attractiveness and light intensity with respect to 

the distance. 

Importantly, the above two search mechanisms work in a col- 

laborative manner to enable the algorithm to escape from the lo- 

cal optimum. As an example, if the spiral search process of the 

moths stagnates and does not find fitter solutions for some of the 

fireflies, the attractiveness function still enables less fit fireflies to 

move towards better solutions, and reach more optimal search re- 

gions, therefore avoiding stagnation. In addition, if the fireflies fail 

to communicate or interact with each other because of a similar 

light intensity or foggy situations, the moths conduct spiral search 

around different fireflies to increase global exploration and fine 

tune the optimal solution vectors to overcome the local optimum. 

These strategies work cooperatively to mitigate premature conver- 

gence and guide the search process to attain global optimality. 

After conducting the abovementioned two search processes, the 

set of fireflies is subsequently ranked based on their fitness val- 

ues. The most promising solution (firefly) among the population is 

identified in each generation. To improve local exploitation of the 

current best solution, the SA operation defined in Eq. (11) is em- 

ployed to perform mutation. 

x t+1 = x t + ε (11) 

where x t+1 and x t represent the newly generated and the origi- 

nally identified promising solutions, respectively, and ɛ indicates 

a standard random walk operation such as a Gaussian, Cauchy, or 

Levy distribution. In this research, Levy flights are used to mutate 

the original solution and generate an offspring further away from 

its parent. If the new offspring solution, Nsol , has a better fitness 

value, it is used to replace the current global best, Csol . However, 

if the new solution is worse than the current best solution, the 

SA accepts the new solution if it satisfies the following probability 

rule [14] . 

exp 

(

−
f ( Nsol ) − f ( Csol ) 

T 

)

> random [ 0 , 1 ] (12) 

where T represents the current temperature for controlling the an- 

nealing process (see Section 2.2.3 ). T is decreased in each iteration 

by a cooling factor α ∈ [0, 1] as defined in Eq. (13) . 

T = αT (13) 

Subsequently, the new global best solution is used to guide the 

search process in the next generation. The algorithm iterates until 

the termination criterion is met, i.e. the maximum number of iter- 

ation is reached or the optimal solution is found. In this way, the 

algorithm is able to benefit from the optimal solutions obtained 

from both moths and fireflies simultaneously. 
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In the proposed algorithm, the following fitness function is ap- 

plied to evaluate the fitness of each moth and firefly. It consists of 

two criteria, i.e. the number of selected features and classification 

accuracy. Note that classification accuracy refers to the accuracy 

rate obtained for each emotion category, rather than a combined 

accuracy score for all emotion classes, in order to avoid bias. 

f ( x ) = w a × ac c x + w f × ( number _ f eatur e x ) 
−1 

(14) 

where w a and w f represent the weights for classification accuracy 

and the number of selected features, respectively, with w f = 1 −w a . 

In this research, we consider classification accuracy is more impor- 

tant than the number of selected features, therefore w a is set to a 

higher value (0.9) while w f assumes a smaller value (0.1). 

The setting of 0.9 and 0.1 as the weights for classification accu- 

racy and the number of selected features, respectively, is obtained 

from the empirical studies of this research, although such a set- 

ting is also recommended in other studies [12,15,19,29] . In this re- 

search, we have also used an empirical demonstration by changing 

w a :w f from 0.9:0.1, 0.8:0.2, 0.7:0.3, 0.6:0.4 to 0.5:0.5. The setting of 

0.9:0.1 has been selected owing to its performance in producing 

the best trade-off between classification accuracy and the num- 

ber of selected features. This observation is also consistent with 

other findings, e.g. to further increase classification accuracy, more 

redundant features need to be removed. Indeed, the experimen- 

tal results indicate that the selected feature subsets by M-LFA are 

more discriminative than those obtained by other state-of-the-art 

PSO and FA variants (e.g. GM-PSO [15] , chaotic FA [26] ), and non- 

evolutionary feature selection methods [9, 13] (see the evaluation 

details in Sections 4.2 and 4.3 ). 

Overall, the proposed M-LFA algorithm employs spiral search, 

attractiveness action, and random walk operations to diversify the 

search process and increase local exploitation and global explo- 

ration. The empirical results indicate that it has superior capabil- 

ities in finding the global optimum, and outperforms metaheuris- 

tic search methods such as PSO, GA, MFO, LFA, GM-PSO [15] , LSFA 

[21] , ODFA [22] and chaotic FA [26] , significantly. 

For the experimental study, we employ NN and Support Vector 

Machine (SVM) for recognition of seven expressions. Optimal set- 

tings of NN and SVM are identified using the trial-and-error and 

grid search methods, respectively. The AdaBoost procedure is also 

used to construct two ensemble classifiers for expression classifi- 

cation, i.e. NN-based and SVM-based ensemble models, where the 

former employs three NNs as the base classifiers with the latter us- 

ing three SVMs as the base classifiers. Each ensemble model em- 

ploys the weighted majority voting method to combine the out- 

puts from the three base classifiers to generate the final classifi- 

cation result [12, 29] . The empirical results indicate that the SVM- 

based ensemble model outperforms both the NN-based ensemble 

and single classification models in diverse experimental settings. 

4. Evaluation 

We employ the frontal-view images from CK + and images with 

45-degree and 90-degree rotations from BU-3DFE and MMI, re- 

spectively, for evaluating the proposed LBP descriptor for feature 

extraction. Moreover, the frontal-view images from CK + , JAFFE, and 

MMI, and multi-view and side-view images from BU-3DFE and 

MMI are also used to evaluate the proposed M-LFA algorithm for 

feature optimization. 

4.1. Evaluation of the proposed LBP descriptor for feature extraction 

To evaluate the proposed LBP descriptor, three baseline LBP de- 

scriptors, i.e. LBP, LGBP and LBPV, have been employed for com- 

parison. Distinctive sets of 250 and 175 images representing the 

seven facial expressions from the CK + database are used for train- 

ing and test, respectively. In this experiment, we use each LBP de- 

scriptor integrated with single and ensemble classifiers for expres- 

sion recognition without applying any feature selection methods. 

Table 1 shows the results from the entire sets of raw features ex- 

tracted by the proposed LBP variant and the original LBPV, LGBP 

and LBP descriptors, respectively. 

As indicated in Table 1 , the best results are produced using the 

SVM-based ensemble model, and the proposed LBP descriptor out- 

performs LBP, LGBP, and LBPV by 14.80%, 8.33%, and 5.25%, respec- 

tively. The empirical results indicate efficiency and superiority of 

the proposed LBP descriptor over LBP, LGBP, and LBPV. 

To further evaluate the efficiency of the proposed LBP descriptor 

in dealing with rotations, illumination changes and scaling differ- 

ences, we have generated four sets of images with 45-degree and 

90-degree rotations, illumination changes, and scaling differences, 

respectively, for evaluation purposes. Firstly, all 175 test images 

from CK + have been converted to those with illumination changes 

by using the brightness and contrast adjustment function provided 

by OpenCV [30] , as follows. 

g ( i, j ) = α f ( i, j ) + β (15) 

where g ( i, j ) denotes the output image pixels and f ( i, j ) denotes the 

source image pixels with i as the row of pixels and j as the col- 

umn of the pixels. α represents the gain and β represents the bias, 

which are used to control the contrast and brightness, respectively. 

The original test images are set into high and low brightness alter- 

natively, using the above equation to generate the new test images. 

Similarly, the original 175 test images have also been trans- 

formed to a set of 175 images with scaling differences using the 

OpenCV resize() function [30] . The same training set of 250 images 

from CK + used in the previous experiment has been employed 

for training before newly generated test images with illumination 

changes and scaling differences are used for evaluation. 

To evaluate the LBP descriptors using rotated images, 45-degree 

multi-view images from the BU-3DFE database and 90-degree side- 

view images from the MMI database are also extracted. Specifically, 

a total of 140 side-view images with 90-degree rotations are ex- 

tracted from the video sequences of MMI, with half of them (i.e. 

70) employed for training and the other half (i.e. 70) for test. A 

set of multi-view images with 45-degree rotations from BU-3DFE 

is also employed for evaluation, with 500 images for training and 

another 250 images for test. In each experiment, the correspond- 

ing LBP-based feature extraction method is applied and integrated 

with diverse classifiers without any feature selection process. The 

detailed evaluation results for cases of illumination changes, scal- 

ing differences, and rotations are summarised in Tables 2 –5. 

As indicated in Tables 2–5 , the proposed LBP descriptor 

shows great robustness and efficiency in dealing with illumination 

changes, scaling differences, and rotations. It outperforms the three 

baseline LBP descriptors in the above diverse test cases signifi- 

cantly. Integrated with the SVM-based ensemble model, all the LBP 

descriptors achieve the highest accuracy rate in each experiment. 

When the SVM-based ensemble model is applied, the proposed 

LBP descriptor outperforms the three baseline descriptors by 10.17–

16.62%, 10.18–17.83%, 3.77–8% and 5.9–7.1%, for images with illu- 

mination changes and scaling differences, and multi-view images 

with 45-degree rotations (BU-3DFE), and side-view images with 

90-degree rotations (MMI), respectively. Moreover, the 90-degree 

side-view images from the MMI database pose the most challeng- 

ing problem because of the dramatic information loss in side-view 

expressions. Our LBP descriptor, however, still shows more discrim- 

inating capabilities as compared with those from other LBP de- 

scriptors in handling such images. Overall, the empirical results in- 

dicate that the three strategies incorporated in the proposed LBP 

descriptor are able to better preserve the distinctiveness and dif- 
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Table 1 

Classification performance of all features extracted by the proposed LBP descriptor and the orig- 

inal LBPV, LGBP, and LBP descriptors for the CK + database. 

Feature Extraction Methods NN (%) SVM (%) NN-based 

Ensemble (%) 

SVM-based 

Ensemble (%) 

LBP 63 .20 64 .83 70 .00 71 .20 

LGBP 68 .12 68 .98 75 .00 77 .67 

LBPV 70 .54 71 .00 77 .32 80 .75 

The proposed LBP descriptor 77 .70 79 .10 83 .50 86 .00 

Table 2 

Performance comparison between the proposed LBP descriptor and other LBP descriptors 

without any feature selection using 175 images with illumination changes derived from CK + . 

Feature extraction models NN % SVM % NN-based 

Ensemble % 

SVM-based 

Ensemble % 

LBP 59 .45 62 .75 65 .00 66 .05 

LGBP 65 .95 67 .23 70 .35 72 .25 

LBPV 68 .35 69 .15 71 .88 72 .50 

The proposed LBP descriptor 75 .50 77 .07 80 .33 82 .67 

Table 3 

Performance comparison between the proposed LBP descriptor and other LBP descriptors 

without any feature selection using 175 images with scaling differences derived from CK + . 

Feature extraction models NN % SVM % NN-based 

Ensemble % 

SVM-based 

Ensemble % 

LBP 60 .10 61 .88 64 .35 65 .50 

LGBP 66 .00 68 .00 71 .67 73 .15 

LBPV 67 .25 68 .45 70 .85 71 .55 

The proposed LBP descriptor 76 .66 78 .81 81 .24 83 .33 

Table 4 

Performance comparison between the proposed LBP descriptor and other LBP descriptors 

without any feature selection using 70 side-view images with 90-degree rotations extracted 

from MMI. 

Feature extraction models NN % SVM % NN-based 

Ensemble % 

SVM-based 

Ensemble % 

LBP 50 .70 51 .25 53 .44 53 .90 

LGBP 51 .00 51 .50 54 .00 54 .00 

LBPV 51 .67 52 .05 54 .60 55 .10 

The proposed LBP descriptor 55 .35 57 .15 60 .50 61 .00 

Table 5 

Performance comparison between the proposed LBP descriptor and other LBP descriptors 

without any feature selection using 250 multi-view images with 45-degree rotations ex- 

tracted from BU-3DFE. 

Feature extraction models NN % SVM % NN-based 

Ensemble % 

SVM-based 

Ensemble % 

LBP 70 .00 72 .33 74 .00 74 .00 

LGBP 73 .45 74 .25 76 .50 77 .33 

LBPV 74 .10 74 .75 76 .00 78 .23 

The proposed LBP descriptor 79 .00 79 .00 81 .50 82 .00 

ferentiate different local structures in the neighbouring pixels of 

an input image. Fig. 3 shows the example outputs of all the LBP 

operators for images with illumination changes, scaling differences 

and rotations. 

4.2. Comparison of the proposed M-LFA feature optimization with 

other metaheuristic search methods 

To evaluate the proposed M-LFA algorithm for feature selection, 

a number of state-of-the-art and conventional search methods are 

used for comparison purposes, which include PSO, GA , LFA , MFO, 

GM-PSO [15] , LSFA [21] , ODFA [22] , and chaotic FA [26] . We em- 

ploy the frontal-view images from CK + , JAFFE and MMI, multi- 

view images with 45-degree rotations from BU-3DFE, and side- 

view images with 90-degree rotations from MMI in the experimen- 

tal study. Specifically, we employ 250 frontal-view images from the 

CK + database for training, and 175 images extracted from each of 

the CK + , MMI, and JAFFE databases for test. Moreover, 500 and 

250 multi-view images with 45-degree rotations from BU-3DFE are 

also used for training and test respectively. Another set of 140 side- 

view images with 90-degree rotations from MMI is also employed, 

with 70 images for training and the remaining 70 images for test. 

In each experiment, the proposed LBP descriptor is used to extract 

the initial features. Then, each feature optimization algorithm is 
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Fig. 3. Example outputs of all the LBP operators for images with illumination changes (the 2nd and 3rd columns derived from CK + ), scaling differences (the 4th and 5th 

columns derived from CK + ) and rotations (the 6th and 7th columns from BU-3DFE and the last column from MMI). 

employed, before single and ensemble classifiers are used for ex- 

pression recognition. 

Firstly, the optimal settings of the proposed M-LFA algorithm 

and all other optimization methods are identified. As an exam- 

ple, to achieve the best trade-off between classification accuracy 

and the computational efficiency, LFA employs the following set- 

tings, i.e. population size = 30, initial attractiveness = 1.0, randomiza- 

tion parameter = 0.2, absorption coefficient = 1.0, Levy’s index = 1.5, 

and maximum iterations = 500. These settings of LFA have also 

been applied to other FA variants (i.e. LSFA, ODFA and chaotic 

FA), and the proposed M-LFA algorithm, except that M-LFA has 

a population size of 30 moths plus 30 fireflies. Moreover, the 

following optimal settings have also been applied to PSO based 

on published studies and our empirical results, i.e. maximum 

velocity = 0.6, inertia weight = 0.78, population size = 30, acceleration 

constants c 1 = c 2 = 1.2, and maximum generations = 500. The setting 

of classical GA is as follows: crossover probability = 0.6, mutation 

probability = 0.05, and maximum generations = 500. The above PSO 

and GA parameters are also used as the optimal settings of GM- 

PSO. 

4.2.1. Within database evaluation using Frontal-view images from 

CK + 

Since the proposed and other feature optimization algorithms 

are stochastic in nature, we perform 30 trials to find the most 

discriminative feature subsets for each algorithm. In the first ex- 

periment, we employ 250 and 175 frontal-view images from the 

CK + database for training and test, respectively. Empirically, the 

proposed M-LFA algorithm is able to converge within 200 to 300 

iterations in most cases with a set of 30 to 50 features extracted. 

Moreover, we have compared the proposed M-LFA algorithm with 

other state-of-the-art and conventional metaheuristic search meth- 

ods. Table 6 shows the average classification accuracy rates of each 

method integrated with diverse classifiers over 30 successive runs, 

respectively. 

In comparison with all other methods, the proposed algorithm 

is able to extract the lowest number of features in the range of 

[30–50] and achieve the highest average accuracy rates when com- 

bined with all single and ensemble classifiers. When NN- and 

SVM-based ensemble models are applied, our algorithm achieves 

its best performance of 100% accuracy. Integrated with the NN- 

based ensemble model, our algorithm outperforms GA, PSO, LFA, 

MFO, GM-PSO, LSFA, ODFA, and chaotic FA by 21.12%, 18.67%, 

14.27%, 8.54%, 10.7%, 16.11%, 9.1%, and 7.67%, respectively. In com- 

bination with the SVM-based ensemble model, the proposed algo- 

rithm outperforms GA, PSO, LFA, MFO, GM-PSO, LSFA, ODFA, and 

chaotic FA by 20%, 17.5%, 12.19%, 7%, 10%, 13.25%, 7.35%, and 5.5%, 

respectively. Moreover, the above accuracy rates obtained using the 

proposed M-LFA algorithm significantly outperform those using the 

entire set of raw features with the proposed LBP descriptor with- 

out any feature selection, as shown in Table 1. 

Fig. 4 shows some examples of the generated optimized feature 

sub-regions for each expression of the images from CK + . Overall, 

significant discriminative characteristics are revealed for each ex- 

pression, which correlate well with the emotional muscular ac- 

tivities defined in the Facial Action Coding System (FACS) [31] . 

As an example, the characteristics associated with the lip corner 

puller and cheek raiser are observed in the optimized sub-regions 

for “happiness”, whereas mouth open, eye widened and the in- 

ner and outer brow raisers are explicitly illustrated in the facial 

sub-regions for “surprise” . The M-LFA algorithm also reveals fea- 

tures that are closely associated with the nose wrinkler, upper lip 

raiser, chin raiser and lips part for “disgust” . The significance of 

the lip stretcher, widened eyes, outer brow raiser and brow low- 

erer is observed in the selected facial sub-regions for “fear” . The 

significance of the brow lowerer, lid and lip tightener is explic- 

itly demonstrated in the selected feature subset for “anger”, while 

the inner brow raiser, brow lowerer and lip corner depressor are 

clearly indicated in the optimized facial regions for “sadness” . 

Overall, significant discriminative characteristics are revealed for 

each expression, which map closely to the AUs provided in FACS. 
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Table 6 

Average classification results for different optimization models over 30 runs using the CK + database. 

Feature selection methods Number of features NN (30 runs) % SVM (30 runs) % NN-based 

Ensemble 

(30 runs) % 

SVM-based 

Ensemble 

(30 runs) % 

GA 10 0–20 0 74 .60 76 .90 78 .88 80 .00 

PSO 110–200 76 .33 78 .70 81 .33 82 .50 

LFA 55–80 80 .00 80 .00 85 .73 87 .81 

MFO 40–90 87 .80 89 .10 91 .46 93 .00 

GM-PSO [15] 45–80 83 .76 86 .45 89 .30 90 .00 

LSFA [21] 60–85 79 .00 79 .50 83 .89 86 .75 

ODFA [22] 50–80 87 .22 88 .55 90 .90 92 .65 

Chaotic FA [26] 45–90 88 .65 89 .00 92 .33 94 .50 

The proposed M-LFA algorithm 30–50 95 .66 96 .50 100 100 

Fig. 4. The sub-regions and their distributions selected by M-LFA for each expression of the CK + images. 

Table 7 

Average classification results over 30 runs for cross-database evaluation with JAFFE. 

Feature selection methods Number of features NN (30 runs) % SVM (30 runs) % NN-based 

Ensemble 

(30 runs) % 

SVM-based 

Ensemble 

(30 runs) % 

GA 10 0–20 0 72 .21 73 .65 77 .00 78 .30 

PSO 110–200 73 .13 75 .90 78 .72 79 .89 

LFA 55–80 79 .21 79 .67 81 .62 84 .55 

MFO 40–90 84 .85 86 .31 88 .21 89 .63 

GM-PSO [15] 45–80 84 .25 85 .96 88 .50 89 .00 

LSFA [21] 60–85 78 .40 79 .00 83 .55 85 .95 

ODFA [22] 50–80 84 .79 85 .00 88 .55 88 .78 

Chaotic FA [26] 45–90 88 .00 88 .00 90 .75 91 .45 

The proposed M-LFA algorithm 30–50 94 .21 95 .30 100 100 

4.2.2. Cross database evaluation using Frontal-view images from 

JAFFE and MMI 

To further evaluate the efficiency of the proposed algorithm, a 

cross-database evaluation is conducted. A set of 175 frontal-view 

images is extracted from MMI and JAFFE, respectively, for test, 

while the above 250 frontal-view images from CK + are employed 

as the training set. Table 7 shows the average performance of each 

algorithm in combination with single and ensemble classifiers for 

evaluation of 175 images extracted from the JAFFE database over 

30 runs. 

As illustrated in Table 7 , in comparison with all other methods, 

the proposed M-LFA algorithm shows great robustness for cross- 

database evaluation with JAFFE. Integrated with single and ensem- 

ble classifiers, it achieves the best average accuracy over 30 runs. 

Integrated with the NN-based ensemble model, the average accu- 

racy (i.e. 100%) of the proposed algorithm is 23%, 21.28%, 18.38%, 

11.79%, 11.5%, 16.45%, 11.45% and 9.25% higher than those of GA, 

PSO, LFA, MFO, GM-PSO, LSFA, ODFA, and chaotic FA, respectively. 

Combined with the SVM-based ensemble model, the average ac- 

curacy (i.e. 100%) of the proposed algorithm outperforms those of 

GA, PSO, LFA, MFO, GM-PSO, LSFA, ODFA, and chaotic FA by 21.7%, 

20.11%, 15.45%, 10.37%, 11%. 14.05%, 11.22%, and 8.55%, respectively. 

Another cross-database evaluation is also conducted using 175 

frontal-view images from the MMI database. The average clas- 

sification results of each algorithm integrated with diverse clas- 

sifiers over 30 trials are provided in Table 8 . As shown in 

Table 8 , trained with 250 images from CK + and tested with 

175 images from MMI, the proposed algorithm achieves the 

highest average accuracy rates in combination with all classi- 

fiers over 30 runs. When the SVM-based ensemble model is 

used, it achieves an average accuracy rate of 94.86%, and out- 

performs GA, PSO, LFA, MFO, GM-PSO, LSFA, ODFA, and chaotic 

FA by 17.35%, 16.8%, 8.46%, 5.07%, 6.88%, 7.81%, 5.98%, and 5.91%, 

respectively. 
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Table 8 

Average classification results over 30 runs for cross-database evaluation with MMI. 

Feature selection methods Number of features NN (30 runs) % SVM (30 runs) % NN-based 

Ensemble 

(30 runs) % 

SVM-based 

Ensemble 

(30 runs) % 

GA 10 0–20 0 69 .60 69 .79 75 .34 77 .51 

PSO 110–200 71 .03 73 .11 77 .51 78 .06 

LFA 55–80 79 .90 81 .76 83 .33 86 .40 

MFO 40–90 84 .83 85 .30 87 .16 89 .79 

GM-PSO [15] 45–80 83 .24 83 .77 86 .45 87 .98 

LSFA [21] 60–85 79 .33 81 .45 85 .75 87 .05 

ODFA [22] 50–80 82 .13 83 .06 86 .95 88 .88 

Chaotic FA [26] 45–90 86 .00 86 .88 87 .67 88 .95 

The proposed M-LFA algorithm 30–50 91 .21 91 .44 94 .27 94 .86 

Fig. 5. The boxplot diagram for all the optimization methods integrated with SVM-based ensemble model over 30 runs using the MMI database. 

Fig. 5 shows the boxplot diagram for the distribution of clas- 

sification results over 30 runs of all optimization algorithms in- 

tegrated with the SVM-based ensemble model using 175 images 

from MMI. As shown in Fig. 5 , the proposed algorithm outperforms 

all other methods significantly. Nearly all the results of our algo- 

rithm are higher than the maximum accuracy rates of GA, PSO, 

LFA, MFO, GM-PSO, and ODFA with at least 75% of our results 

higher than the highest accuracy rate of chaotic FA, and 25% of our 

results higher than the maximum accuracy rate of LSFA. In com- 

parison with other algorithms, the proposed algorithm also has 

a better accuracy distribution with comparatively smaller varia- 

tions between the 25% and 75% percentiles. The median value of 

our algorithm (94.93%) is higher than those of GA, PSO, LFA, MFO, 

GM-PSO, LSFA, ODFA, and chaotic FA by 17.72%, 16.43%, 8.29%, 5%, 

6.93%, 7.86%, 5.93%, and 5.86% respectively. Fig. 6 also illustrates 

the detailed performance variations of each emotion category over 

30 runs for all algorithms using the MMI images. 

As illustrated in Fig. 6 , for each emotion category, the median 

value of our algorithm is higher than those of all other methods. 

For recognition of “sadness” and “fear” emotions, 25% of the re- 

sults from our algorithm are higher than the maximum results of 

all other algorithms. For the “disgust” emotion, except for LSFA and 

ODFA, 25% of our results are also higher than the maximum re- 

sults of the rest of the methods. For “happiness”, the minimum 

accuracy rate of our algorithm (with a lower whisker of 92%) is 

higher than 50% of the results of MFO, ODFA, and chaotic FA, 75% 

of the results of GA, PSO, GM-PSO, and LSFA, and all the results 

of LFA. For “anger”, the minimum accuracy rate of our algorithm 

(with a lower whisker of 89%) is higher than nearly 50% of the re- 

sults of MFO, ODFA, and chaotic FA, 75% of the results of LFA, GM- 

PSO, and LSFA, and all the results of GA and PSO. For the “surprise”

emotion, the median value of our algorithm (100%) is 5%, 5%, 5.5%, 

6.5%, 7.5%, 8%, 15.5%, and 16% higher than those of chaotic FA, MFO, 

ODFA, LSFA, GM-PSO, LFA, PSO, and GA, respectively. For the “neu- 

tral” emotion, in comparison with all other methods, our algorithm 

has a better accuracy distribution with comparatively smaller vari- 

ations between the 25% and 75% percentiles, and the minimum 

accuracy rate of our algorithm (with a lower whisker of 91%) is 

higher than at least 25% of the results of MFO and chaotic FA, 50% 

of the results of LSFA and ODFA, 75% of the results of LFA and 

GM-PSO, and all results of GA and PSO. Overall, the evaluation re- 

sults indicate superiority of our algorithm. It outperforms all other 

methods by a significant margin. 

Fig. 7 shows some examples of the generated optimized facial 

sub-regions for each expression pertaining to the images from MMI 

and JAFFE using the proposed M-LFA algorithm. Similar observa- 

tions as those from CK + can be explicitly observed in the example 

outputs. In general, significant discriminative characteristics asso- 

ciated with each expression are revealed, which indicate efficiency 

and superiority of the proposed M-LFA algorithm. 

4.2.3. Evaluation using images with rotations from MMI and 

BU-3DFE 

As indicated in our previous experiments, the 45-degree multi- 

view images from BU-3DFE and 90-degree side-view rotated fa- 

cial images from MMI reveal significant information loss and pose 

great challenges to state-of-the-art facial expression recognition 

systems. Therefore, we employ such multi-view and side-view im- 

ages from BU-3DFE and MMI, respectively, to further ascertain the 

robustness of our feature selection algorithm. In the experiment, 

we use the proposed LBP descriptor for feature extraction. Then, 

each feature selection algorithm is used for feature optimization 

before employing the single and ensemble classifiers. 
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Fig. 6. The boxplot diagrams for each emotion category over 30 runs using the MMI database. 

Firstly, we employ previous 140 side-view images from MMI for 

evaluation. A total of 70 images are used for training, with the re- 

maining images for test. Table 9 shows the average classification 

results of each algorithm in combination with diverse classifiers 

over 30 runs. Some examples of the selected optimized facial sub- 

regions for each expression of the side-view images are illustrated 

in Fig. 8. 

As illustrated in Table 9 , the proposed algorithm achieves the 

best accuracy scores in combination with diverse classifiers. When 

the SVM-based ensemble model is applied, M-LFA achieves an av- 

erage accuracy rate of 86.35%, and outperforms GA, PSO, LFA, MFO, 

GM-PSO, LSFA, ODFA, and chaotic FA by 21.23%, 20.45%, 15.6%, 

11.35%, 10.25%, 12.68%, 11.35% and 9.9%, respectively. As indicated 

in Fig. 8 , significant discriminative features associated with each 
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Fig. 7. The sub-regions and their distributions selected by the proposed M-LFA for each expression for images from MMI (the first three images) and JAFFE (the last four 

images). 

Table 9 

Average classification results over 30 runs for the 90-degree side-view images extracted from MMI. 

Feature selection methods Number of features NN (30 runs) % SVM (30 runs) % NN-based 

Ensemble 

(30 runs) % 

SVM-based 

Ensemble 

(30 runs) % 

GA 120–250 60 .44 60 .77 64 .43 65 .12 

PSO 100–195 61 .85 61 .95 65 .00 65 .90 

LFA 45–90 66 .99 68 .19 70 .09 70 .75 

MFO 50–85 71 .20 71 .88 73 .50 75 .00 

GM-PSO [15] 45–80 72 .33 72 .50 74 .75 76 .10 

LSFA [21] 65–85 70 .25 71 .00 72 .34 73 .67 

ODFA [22] 50–70 70 .05 70 .78 72 .45 75 .00 

Chaotic FA [26] 50–80 74 .55 75 .00 76 .05 76 .45 

The proposed M-LFA algorithm 40–65 78 .00 80 .40 85 .99 86 .35 

Fig. 8. The sub-regions and their distributions selected by the proposed M-LFA algorithm for each expression of the side-view images with 90-degree rotations extracted 

from MMI. 

expression are also revealed for the 90-degree side-view images 

to indicate efficiency of the proposed M-LFA algorithm. The ex- 

tracted features also map closely with the muscular activities rec- 

ommended by FACS. 

Moreover, we have also employed multi-view images from the 

BU-3DFE database to further assess our feature selection algorithm. 

The original 750 multi-view images from BU-3DFE are used for 

evaluation, with 500 images for training and 250 images for test. 

Table 10 shows the average classification performances of each al- 

gorithm in combination with diverse classifiers over 30 runs using 

multi-view images with 45-degree rotations. As shown in Table 10 , 

the M-LFA algorithm achieves the highest accuracy rates in combi- 

nation with diverse classifiers. Integrated with the SVM-based en- 

semble model, it obtains the best average accuracy rate of 100%, 

and outperforms GA, PSO, LFA, MFO, GM-PSO, LSFA, ODFA, and 

chaotic FA by 26.75%, 23.89%, 20%, 9.55%, 10.9%, 12.05%, 7.01%, and 

3.3%, respectively. 

The selected optimized facial sub-regions for each expression 

of the multi-view images are shown in Fig. 9 . These selected opti- 

mal sub-regions around the mouth and eye areas associate strongly 

with the expression of seven emotions. They are highly correlated 

with the AUs provided in FACS too. 
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Table 10 

Average classification results over 30 runs for multi-view images with 45-degree rotations extracted from BU-3DFE. 

Feature selection methods Number of features NN (30 runs) % SVM (30 runs) % NN-based 

Ensemble 

(30 runs) % 

SVM-based 

Ensemble 

(30 runs) % 

GA 135–245 70 .15 70 .80 73 .00 73 .25 

PSO 150–215 72 .33 73 .00 75 .67 76 .11 

LFA 60–95 76 .75 77 .56 79 .33 80 .00 

MFO 45–75 86 .45 87 .05 89 .75 90 .45 

GM-PSO [15] 40–70 85 .77 86 .10 88 .50 89 .10 

LSFA [21] 45–90 84 .00 84 .75 86 .65 87 .95 

ODFA [22] 40–65 89 .20 90 .00 92 .35 92 .99 

Chaotic FA [26] 40–70 92 .50 92 .89 94 .30 96 .70 

The proposed M-LFA algorithm 25–55 95 .87 96 .25 100 100 

Fig. 9. The sub-regions and their distributions selected by the proposed M-LFA algorithm for each expression of multi-view images with 45-degree rotations extracted from 

BU-3DFE. 

Some theoretical comparison between ODFA [22] and the pro- 

posed M-LFA algorithm is conducted, as follows. ODFA employs an 

opposition-based method for population initialization, which in- 

cludes generating an opposite population of the original swarm. 

Then, a dimensional-based method is applied to generate the 

global best solution by identifying the most optimal value for each 

dimension individually. This global best solution is then used for 

updating the position of each firefly in each iteration. Although 

achieving an efficient computational cost, the search process of 

ODFA inherits the PSO concept, which is guided by the global best 

solution in each generation, rather than evolving through a set of 

optimal solutions based on the attractiveness and attraction be- 

haviours of the original FA model. In addition, ODFA does not pro- 

vide any mechanism to conduct long and short jumps of the iden- 

tified global best solution to avoid local optimum. Therefore, it is 

more likely to lead to premature convergence. Another shortcom- 

ing of ODFA is its limitation in dealing with multimodal optimiza- 

tion problems that have multiple best solutions. GM-PSO [15] in- 

tegrates PSO with the GA and three mutation techniques of Gaus- 

sian, Cauchy and Levy distributions to further enhance the swarm 

leader to identify the discriminative features for bodily expres- 

sion regression. However, its search strategy relies heavily on the 

PSO mechanism where the search process is guided by the global 

best leader rather than multiple promising solutions in the search 

space, therefore more likely to be trapped in local optima. LSFA 

[21] incorporates LFA with SA, where the best solution identified 

by LFA is further enhanced by the SA. However, SA-based local ex- 

ploitation is only applied to the global best solution. The algorithm 

does not include any other strategy to increase local exploitation of 

the overall population. Therefore, the search process lacks of diver- 

sity and shows limited capability in escaping from local optima. 

Moreover, chaotic FA [26] employs CMO for population initializa- 

tion, in order to increase swarm diversity. A chaotic strategy is also 

employed by fireflies with a lower light intensity to move towards 

those with a higher light intensity in the neighbourhood. Espe- 

cially, the firefly with the highest light intensity purely executes 

this chaotic movement, rather than a random behaviour, to exploit 

the search space. However, if this chaotic movement fails to gener- 

ate a fitter offspring for the current global best leader, there is no 

search mechanism embedded in the algorithm to drive the search 

out of the local optimum and to overcome stagnation. 

In comparison with the above methods, the proposed M-LFA al- 

gorithm employs fireflies and moths to follow multiple attractive 

solutions in the neighbourhood (rather than purely following the 

global best leader as in ODFA [22] and GM-PSO [15] ) to mitigate 

premature convergence. It employs two search strategies, i.e. the 

spiral search of the moths to increase local exploitation of LFA and 

the attractiveness search actions of the fireflies to cause sudden 

movement of fireflies and their attached moths to increase global 

exploration of MFO. In each iteration, each firefly is guided by both 

search strategies simultaneously to find the optimal solution. These 

two strategies work cooperatively to overcome the local optimum. 

When there are no more attractive fireflies in the search space, the 

spiral search behaviour of the moths exploits the neighbourhood of 
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Table 11 

Comparison between the proposed M-LFA algorithm and non-evolutionary feature selection methods using frontal-view images 

from CK + , JAFFE and MMI. 

Feature selection methods Average number of CK + JAFFE MMI (Frontal-view) 

selected features SVM-based 

Ensemble % 

SVM-based 

Ensemble % 

SVM-based 

Ensemble % 

mRMR [13] 72 84 .00 83 .56 79 .50 

PCA + LDA [9] 61 97 .88 97 .05 92 .33 

PCA + LFDA [9] 55 98 .75 98 .25 92 .50 

KLFDA [9] 54 99 .00 98 .88 93 .00 

The proposed M-LFA algorithm 43 100 100 94 .86 

Table 12 

Comparison between the proposed M-LFA algorithm and non-evolutionary 

feature selection methods using side-view images with 90-degree rotations 

from MMI. 

MMI (90-degree side-view) 

Feature selection 

methods 

Average number of 

selected features 

SVM-based 

Ensemble % 

mRMR [13] 164 70 .85 

PCA + LDA [9] 71 80 .45 

PCA + LFDA [9] 57 81 .00 

KLFDA [9] 57 83 .20 

The proposed M-LFA 

algorithm 

50 86 .35 

the fireflies, in order to avoid stagnation. On the other hand, when 

the spiral search process of the moths fails to identify a fitter so- 

lution, the attractiveness and attraction behaviours of the fireflies 

are able to guide the search process towards the optimal region. 

In addition, SA embedded with Levy flights is used to enable long- 

jump of the most optimal solution to avoid stagnation. The above 

search mechanism leads to superiority of the proposed algorithm 

over other state-of-the-art PSO and FA variants, i.e. GM-PSO [15] , 

LSFA [21] , ODFA [22] , and chaotic FA [26] . Most importantly, our 

algorithm extends the natural multimodal optimization character- 

istics of the original LFA, and shows efficient abilities in dealing 

with multimodal optimization problems. 

4.3. Comparison with Non-evolutionary feature selection methods 

Besides the above theoretical evaluation and empirical compar- 

ison against evolutionary feature optimization methods, we fur- 

ther compare M-LFA with non-evolutionary feature selection tech- 

niques presented in [9] and [13] . As discussed earlier, Ali et al. 

[9] employed three feature dimensionality reduction techniques 

to identify the most discriminative features for each expression, 

i.e., PCA + LDA, PCA + LFDA, and KLFDA. Zhang et al. [13] developed 

a shape-based facial expression recognition system with mRMR- 

based feature selection. We have also implemented both non- 

evolutionary feature selection methods described in [9] and [13] , 

i.e. mRMR, PCA + LDA, PCA + LFDA, and KLFDA, for comparison. In 

each experiment, we use the proposed LBP descriptor to extract 

initial facial features, and then apply each of the above feature se- 

lection methods for feature optimization. Table 11 shows the re- 

sults for each set of 175 frontal-view images extracted from CK + , 

MMI, and JAFFE respectively. Note that 250 images from CK + are 

used for training. We have also compared M-LFA with the above 

methods using the 90-degree side-view images from MMI, with 70 

images for training and another 70 images for test. Multi-view im- 

ages from BU-3DFE are also used for evaluation, with 500 and 250 

images for training and test, respectively. The results from the side- 

view images from MMI and multi-view images from BU-3DFE are 

provided in Tables 12 and 13 , respectively. 

Table 13 

Comparison between the proposed M-LFA algorithm, and non-evolutionary 

feature selection methods using the multi-view images with 45-degree ro- 

tations from BU-3DFE. 

BU-3DFE (45-degree multi-view) 

Feature selection 

methods 

Average number of 

selected features 

SVM-based 

Ensemble % 

mRMR [13] 177 77 .33 

PCA + LDA [9] 90 96 .00 

PCA + LFDA [9] 84 96 .35 

KLFDA [9] 87 97 .98 

The proposed M-LFA 

algorithm 

36 100 

Theoretical comparison between M-LFA and the above non- 

evolutionary feature selection methods is conducted, as follows. 

Although mRMR is a popular feature optimization method, ac- 

cording to Zeng et al. [32] , the incremental search scheme of 

mRMR only selects one feature at a time without considering 

the interaction between groups of features. Therefore, the exper- 

iments using the mRMR-based feature selection method shown in 

Tables 11–13 yield the least promising performance. As indi- 

cated in Tables 11–13 , the three related methods, i.e. PCA + LDA, 

PCA + LFDA, and KLFDA in [9] , show competitive performances to 

those achieved by the proposed M-LFA algorithm. However, a com- 

paratively larger number of features are selected by the three 

methods than those selected by M-LFA for the above evaluation. 

Especially, for the evaluation of multi-view images from BU-3DFE, 

our algorithm selects a dramatically smaller number of 36 features 

in comparison with 90, 84, and 87 recommended by PCA + LDA, 

PCA + LFDA and KLFDA, respectively. The empirical results also in- 

dicate that the extracted smaller sets of features by our algo- 

rithm show more discriminative capabilities and reveal more rel- 

evant information pertaining to a specific emotion category owing 

to the spiral-based local exploitation and attraction-based global 

exploration. Therefore it outperforms PCA + LDA, PCA + LFDA and 

KLFDA consistently for the evaluation of frontal-view, multi-view 

and side-view images from diverse databases. Moreover, the per- 

formance of LFDA and KLFDA in [9] also relies heavily on the 

choice of the affinity matrix and the optimal selection, and pa- 

rameter settings of the kernel functions respectively [33] . However, 

the proposed M-LFA algorithm does not require such complex ker- 

nel settings with smaller but more discriminating feature subsets 

identified. Therefore, M-LFA has better computational efficiency to 

fulfil real-time application requirements. 

Furthermore, we compare the computation efficiency of our al- 

gorithm and all other metaheuristic and non-evolutionary feature 

selection algorithms in Table 14 . The computational cost for each 

method includes the execution of the proposed LBP descriptor for 

feature extraction and the features selected by each corresponding 

method and the SVM-based ensemble classifier. This setting is se- 

lected because of its impressive performances for diverse test cases 
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Table 14 

The computational costs of the proposed system and other related methods. 

Feature selection 

methods applied 

Average number of 

selected features 

Computational cost 

(milliseconds) 

GA 180 380 

PSO 154 362 

LFA 62 260 

MFO 70 280 

GM-PSO [15] 61 260 

LSFA [21] 68 270 

ODFA [22] 76 320 

Chaotic FA [26] 57 250 

mRMR [13] 72 285 

PCA + LDA [9] 61 262 

PCA + LFDA [9] 55 250 

KLFDA [9] 54 250 

The proposed M-LFA 

algorithm 

43 235 

for all methods. The results shown in Table 14 are obtained by av- 

eraging the computational efficiency and the number of selected 

features across all the testing conducted using frontal images from 

CK + , JAFFE and MMI. 

As shown in Table 14 , the computational costs are closely linked 

with the number of selected features for classification. As an ex- 

ample, we observe that GA and PSO have the longest processing 

time because larger sizes of features are selected, i.e. 180 for GA 

and 154 for PSO. The numbers of features extracted by ODFA (76), 

mRMR (72), MFO (70), LSFA (68), LFA (62), GM-PSO (61), PCA + LDA 

(61), PCA + LFDA (55) and KLFDA (54) are smaller, and they have 

lower computational costs. Comparatively, the proposed M-LFA al- 

gorithm has the smallest number of features (43) and the lowest 

computational cost. 

4.4. Comparison with other facial expression recognition methods 

We have compared our algorithm with other state-of-the-art fa- 

cial expression recognition methods using CK + , MMI, and JAFFE. 

Table 15 shows the comparison results between our algorithm and 

other related methods with the CK + database. 

As shown in Table 15 , among different related methods, Ali 

et al. [9] , Zhang et al. [8] , and Neoh et al. [12] achieved the 

highest accuracy rates with the CK + database. Ali et al. [9] em- 

ployed the non-linear technique of EMD to extract the initial fea- 

tures. Integrated with KLFDA and ELM-RBF, their proposed method 

achieved the highest recognition accuracy rate of 99.75%, when 

evaluated with the cross-validation scheme. Their results indicated 

that sometimes the “sad” expression could be misclassified as “sur- 

prise”. Zhang et al. [8] learnt a joint representation from the tex- 

ture and landmark modalities to enhance expression recognition, 

and achieved an impressive average recognition accuracy rate of 

99.3% over 5 runs using the hold-out validation method. How- 

ever, their work required neutral images as references and also 

a sequence of six images as inputs for expression recognition. 

Neoh et al. [12] proposed a layered encoding cascade optimization 

model for facial expression recognition. Their feature optimization 

process revealed significant emotional facial texture information, 

and achieved an impressive accuracy rate of 97.4%. However, their 

multi-objective optimization strategy sometimes disregarded im- 

portant mouth-related features associated with emotional expres- 

sions (e.g. lip tightener for anger). In comparison with the above- 

mentioned state-of-the-art methods, our proposed algorithm re- 

veals significant discriminative facial features, correlated strongly 

with the facial AUs given in FACS, and achieves the highest aver- 

age accuracy rate of 100% over 30 hold-out validations. 

Table 16 illustrates the performance comparison between our 

algorithm and related methods using the JAFFE database. Ali et 

al. [9] employed three feature reduction techniques (PCA + LDA, 

PCA + LFDA, and KLFDA) in combination with EMD-based feature 

extraction, and achieved the highest accuracy rate of 100% using 

10-fold cross validation. When trained with CK + and tested with 

JAFFE, Shan et al. [34] employed boosted LBP and RBF-based SVM, 

and achieved an accuracy rate of 41.3%. In comparison with other 

methods, the proposed system achieves 100% accuracy over 30 

runs when trained and tested using CK + and JAFFE, respectively. 

Again, the result indicates superiority and robustness of our pro- 

posed algorithm. 

We have also conducted performance comparison between our 

algorithm and related methods using the MMI database. As shown 

in Table 17 , employing CK + and MMI for training and test respec- 

tively, Liu et al. [41] , Fan and Tjahjadi [36] , and Shan et al. [34] ob- 

tained accuracy rates of 72.2%, 58.7%, and 51.1% using 10-fold cross 

validation, respectively. Zhong et al. [42] achieved F1-measure of 

77.39% when trained and tested with MMI. In comparison with 

these methods, our algorithm achieves the highest average accu- 

racy rate of 94.86% over 30 hold-out validations when trained with 

CK + and tested with MMI. The proposed LBP descriptor for feature 

extraction and the M-LFA algorithm for feature optimization lead 

to superiority of our system. 

4.5. Real-life deployment and evaluations 

In this research, the proposed facial expression recognition sys- 

tem has been deployed in real-life settings to further ascertain its 

efficiency. We present the following case studies to address the 

practicality and robustness of the proposed system. 

First of all, we integrate the proposed facial expression sys- 

tem with a vision-enriched intelligent virtual agent for health and 

emotion well-being monitoring for the elderly [43] . This intelli- 

gent agent has been developed to conduct object recognition, ob- 

ject/human attribute prediction (e.g. shape and colour for objects, 

and age and gender for human subjects), scene classification and 

facial expression recognition using live video stream inputs col- 

lected by the built-in camera of a personal computer or a tablet to 

perform health and emotion well-being monitoring [43] . The facial 

expression recognition function embedded in this intelligent agent 

has been performed by a basic version of our previous work [43] . 

The proposed facial expression recognition system has been used 

to replace our previous version and to work with the intelligent 

agent in facial expression perception in real-life settings. Speech 

recognition and synthesis functions are also integrated in the in- 

telligent agent. The popular online encyclopaedia Wikipedia is also 

equipped to enable the conversation of the intelligent agent to lit- 

erally cover any topics. User evaluation has been carried out with 

10 subjects (4 British male, 2 British female, and 4 Indian male) 

aged between 20–30 to assess the newly integrated facial expres- 

sion recognition function. The user evaluation session starts with 

greetings and an informal chat with the agent. Then, each user is 

asked to either pose the seven facial expressions, or show spon- 

taneous expressions during their conversation with the facial ex- 

pression classification results reported back to the user through a 

speech synthesis function. Overall, 70 (10 subjects ∗ 7 emotions) 

facial expressions are captured and evaluated by the proposed sys- 

tem in real time. It achieves the following accuracy for each emo- 

tion category, i.e. 80% for “anger”, “fear”, and “sadness”, 100% for 

both “happiness” and “surprise”, and 90% for “disgust” and “neu- 

tral”, respectively. This intelligent health and emotion well-being 

monitoring system with posed and spontaneous facial expression 

recognition has been demonstrated in industrial showcases suc- 

cessfully. The above real-life deployment has also proved the supe- 

riority and efficiency of the proposed system in real-life settings. 

The system will also be further evaluated intensively by elderly 
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Table 15 

Performance comparison using the CK + database. 

Studies Methodology Classes Type of data Evaluation Strategy Recognition rate (%) 

Zhang et al. [8] Multimodal learning 6 Dynamic 5 hold-out validations 

with 33.3% for 

testing for each run 

99 .3 

Ali et al. [9] EMD + KLFDA + ELM-RBF 7 Static 10-fold cross validation 99 .75 

Neoh et al. [12] Overlap 

LGBP + Pareto + Weighted 

majority vote 

7 Static 42 .8% for testing 97 .4 

Shan et al. [34] Boosted LBP + SVM 7 Static 10-fold cross validation 91 .40 

Zhang et al. [35] Facial landmark 

detection + neural 

networks 

7 Static Hold-out validation 75 .83 

Fan and Tjahjadi [36] PHOG_TOP + Dense 

optical flow + SVM 

7 Dynamic Leave-one-out cross 

validation 

83 .7 

Zhang et al. [37] Unsupervised facial 

point detector + fuzzy 

c-means 

7 Static Hold-out validation 91 .86 

This research The proposed 

LBP + M-LFA + 

SVM-based ensemble 

7 Static 30 hold-out validations 

with 46.6% for 

testing for each run 

100 

Table 16 

Performance comparison using the JAFFE database. 

Related Work Methodology Classes Type of data Evaluation Strategy Recognition Rate 

(%) 

Ali et al. [9] EMD + KLFDA + 

KNN/SVM/ELM-RBF 

7 Static 10-fold cross 

validation 

100 

Shan et al. [34] Boosted LBP + SVM 7 Static 10-fold cross 

validation 

41.3 (trained with 

CK + and tested 

with JAFFE) 

Rahulamathavan et al. [38] LFDA + kNN 7 Static Leave-one-out cross 

validation 

94.37 

Zhang and Tjondronegoro [39] Patch-based 

Gabor + SVM 

6 Static Leave-one-out cross 

validation 

93.48 

Zhao and Zhang [40] LBP + kernel 

discriminant 

isomap + nearest 

neighbor 

7 Static Cross-validation 81.59 

This research The proposed 

LBP + M-LFA + 

SVM-based ensemble 

7 Static 30 hold-out 

validations 

100 (trained with 

CK + and tested 

with JAFFE) 

Table 17 

Performance comparison using the MMI database. 

Related Work Methodology Classes Type of data Evaluation Strategy Recognition Rate (%) 

Shan et al. [34] Boosted LBP + SVM 7 Static 10-fold cross validation 51.1(trained with CK + 

and tested with 

MMI) 

Fan and Tjahjadi [36] PHOG_TOP + Dense 

optical flow + SVM 

6 Dynamic 10-fold cross validation 58.70 (trained with 

CK + and tested with 

MMI) 

Liu et al. [41] AUDN 6 Static 10-fold cross validation 72.2 (trained with CK + 

and tested with 

MMI) 

Zhong et al. [42] Multitask sparse 

learning 

6 Static F1 MEASURE 77.39 

This research The proposed 

LBP + M-LFA + 

SVM-based ensemble 

7 Static 30 hold-out validations 94.86 (trained with 

CK + and tested with 

MMI) 

users in real-life settings with the support of UK industrial part- 

ners, NHS, and Age UK. 

Another similar real-life deployment has also been conducted 

by integrating the proposed system with the C ++ SDK of the lat- 

est humanoid NextGen H25 NAO robot, in order to bring bene- 

fits to real-life human robot interaction [29,35,37] . This humanoid 

robot has a powerful CPU processor and built-in camera sensors 

to enable real-time vision-based processing and facial expression 

perception. Related applications can also be found in our previous 

studies [29,35,37] . The proposed facial expression recognition sys- 

tem shows great potential to contribute to such intelligent service 

robot development for personalised healthcare and intelligent tu- 

toring applications. Furthermore, the proposed LBP descriptor for 

feature extraction and M-LFA for feature optimization can also be 

easily applied to bioinformatics applications such as MRI brain tu- 

mour image classification and blood cancer detection from micro- 

scopic images [44–47] . As an instance, the proposed LBP descrip- 

tor is able to extract initial features from the MRI brain tumour or 
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microscopic lymphocytic images. Then, the most significant shape, 

colour, and texture features associated with the tumour region or 

the nucleus and cytoplasm of lymphocytes/lymphoblasts can be re- 

trieved by the proposed M-LFA algorithm to improve classification 

accuracy. 

5. Conclusions 

We have proposed a new LBP descriptor for discriminative 

feature extraction and a novel LFA variant for feature optimiza- 

tion. Diverse classifiers have been employed for recognition of 

seven expressions. The proposed LBP descriptor integrates LBP, 

LGBP, and LBPV to extract local spatial patterns and contrast mea- 

sures for texture description, in order to better deal with illumi- 

nation changes, rotations, and scaling differences. The proposed 

M-LFA feature selection algorithm benefits from local exploitation 

of moths and attractiveness behaviours of fireflies simultaneously 

to identify local and global optimal solutions. It employs spiral 

search of the moths to increase local exploitation of LFA and the 

attractiveness search actions of the fireflies to cause sudden op- 

timal movement of the fireflies and their attached moths to in- 

crease global exploration of MFO. SA-embedded Levy flights search 

diversification has also been used to increase exploitation of the 

current global best solution. Evaluated with the frontal-view im- 

ages from CK + , MMI, and JAFFE and the multi-view and side-view 

images from BU-3DFE, and MMI respectively, the proposed sys- 

tem outperforms other state-of-the-art metaheuristic search and 

non-evolutionary feature selection methods by a significant mar- 

gin. Moreover, the proposed system outperforms other state-of- 

the-art facial expression recognition methods reported in the lit- 

erature significantly. 

For future research, we will evaluate the proposed algorithm 

with diverse multimodal optimization problems to further ascer- 

tain its efficiency. To increase the convergence speed, adaptive pa- 

rameter setting will also be explored to enable key parameters 

such as the randomization parameter in the attractiveness func- 

tion to decrease gradually during the iterative process while ap- 

proaching the global optima. Such a dynamic parameter setting en- 

ables the search process to have sufficient diversity in early gener- 

ations as well as the capability of fine-tuning the solutions in final 

iterations. Moreover, we aim to evaluate the proposed algorithm 

in tackling multi-objective optimization problems. In terms of ap- 

plications, the proposed algorithm will be also used for complex 

computer vision tasks, such as object tracking in video sequences 

and salient object detection, and bioinformatics applications such 

as retinal and skin disease detection. 
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