2 research outputs found

    Creativity by copying: imitating life as a work of imagination

    Get PDF
    Engineering biological systems is easily interpretable as a process of mere and cold replication, or even distortion, of the natural domain, since it is often linked to industry and built on the Cartesian assumption of human rationality’s control over asubmissive nature. In this article, I approach living systems design from an alternative perspective, supporting its similarities with activities which are traditionally associated with creativity, like arts. I show that different kinds of creativity are deeply involved in copying, composing, and modifying life, focusing on two different levels: that of scientific modelling, recognisable by looking at biological circuits design, and that of actual building of new organisms of evolutionary interest, like the artificial bacterium JCVI-syn3.0

    miR-223:A Key Regulator in the Innate Immune Response in Asthma and COPD

    Get PDF
    Asthma and Chronic Obstructive Pulmonary Disease (COPD) are chronic obstructive respiratory diseases characterized by airway obstruction, inflammation, and remodeling. Recent findings indicate the importance of microRNAs (miRNAs) in the regulation ofpathological processes involved in both diseases. MiRNAs have been implicated in a wide array of biological processes, such as inflammation, cell proliferation, differentiation, and death. MiR-223 is one of the miRNAs that is thought to play a role in obstructive lung disease as altered expression levels have been observed in both asthma and COPD. MiR-223 is a hematopoietic cell–derived miRNA that plays a role in regulation of monocyte-macrophage differentiation, neutrophil recruitment, and pro-inflammatory responses and that can be transferred to non-myeloid cells via extracellular vesicles or lipoproteins. In this translational review, we highlight the role of miR-223 in obstructive respiratory diseases, focusing on expression data in clinical samples of asthma and COPD, in vivo experiments in mouse models and in vitro functional studies. Furthermore, we provide an overview of the mechanisms by which miR-223 regulates gene expression. We specifically focus on immune cell development and activation and involvement in immune responses, which are important in asthma and COPD. Collectively, this review demonstrates the importance of miR-223 in obstructive respiratory diseases and explores its therapeutic potential in the pathogenesis of asthma and COPD. <br/
    corecore