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Asthma and Chronic Obstructive Pulmonary Disease (COPD) are chronic obstructive

respiratory diseases characterized by airway obstruction, inflammation, and remodeling.

Recent findings indicate the importance of microRNAs (miRNAs) in the regulation of

pathological processes involved in both diseases. MiRNAs have been implicated in a

wide array of biological processes, such as inflammation, cell proliferation, differentiation,

and death. MiR-223 is one of the miRNAs that is thought to play a role in obstructive

lung disease as altered expression levels have been observed in both asthma and

COPD. MiR-223 is a hematopoietic cell–derived miRNA that plays a role in regulation

of monocyte-macrophage differentiation, neutrophil recruitment, and pro-inflammatory

responses and that can be transferred to non-myeloid cells via extracellular vesicles or

lipoproteins. In this translational review, we highlight the role of miR-223 in obstructive

respiratory diseases, focusing on expression data in clinical samples of asthma and

COPD, in vivo experiments in mouse models and in vitro functional studies. Furthermore,

we provide an overview of themechanisms by whichmiR-223 regulates gene expression.

We specifically focus on immune cell development and activation and involvement

in immune responses, which are important in asthma and COPD. Collectively, this

review demonstrates the importance of miR-223 in obstructive respiratory diseases and

explores its therapeutic potential in the pathogenesis of asthma and COPD.

Keywords: asthma, COPD, miRNAs, miR-223, inflammation

INTRODUCTION

Worldwide, the prevalence of people with chronic respiratory disease is increasing. The most
common chronic inflammatory airway diseases are asthma and chronic obstructive pulmonary
disease (COPD), with a prevalence of 358 million asthma patients and 174 million COPD patients,
respectively (1). Over the last years, it has become clear that both diseases are complex and
heterogeneous with different underlying processes (2, 3).

Asthma affects the large and small airways leading to symptoms such as shortness of breath,
wheezing, coughing, and chest tightness. The cause of asthma is unknown, however there are
several risk factors influencing the development and severity of asthma. The most common risk
factors are host factors (including genetics) and environmental factors (allergens, viral/microbial
infections, air pollutants, smoke) (4).
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Asthma can be divided in several phenotypes depending
on presence of allergy, inflammatory profiles, and age of
onset (2). Allergic asthma is the most common form of
asthma, where allergens such as house dust mite, pollen, and
pet dander trigger a type 2-driven inflammatory response in
the lungs. This leads to airway remodeling, with increased
smooth muscle mass, airway hyperresponsiveness, and mucus
hypersecretion (4). Allergic asthma, which generally develops
early in life, is characterized by the presence of allergen specific
immunoglobulin E, elevated airway infiltration of eosinophils
and T helper 2 (Th2) lymphocytes and increased levels of type
2 cytokines e.g., IL-5 and IL-13 (2). Type 2 inflammation can
also occur in non-allergic eosinophilic asthma, which develops
later in life, is often more severe and is associated with increased
numbers of type 2 innate lymphoid cells (ILC2s) that produce
IL-5 and IL-13 in response to epithelial damage (5). Other,
non-type 2 asthma phenotypes are characterized by elevated
sputum neutrophils numbers (called neutrophilic asthma) or by
airway remodeling that is not accompanied by higher sputum
levels of eosinophils and neutrophils (called paucigranulocytic
asthma) (2). The clinical manifestations of asthma can be
controlled by inhaled corticosteroids (ICS), combined with
bronchodilators in the majority of asthma patients, while a
subset of patients with severe asthma is insensitive to ICS
(6, 7).

COPD affects around 10% of the world’s population and
is the third leading cause of death worldwide (8). In COPD,
chronic inflammation mainly affects the small airways leading
to symptoms such as shortness of breath, chronic cough and/or
wheezing (6). It is a heterogeneous disease characterized by
irreversible airflow limitation and accelerated lung function
decline caused by pulmonary inflammation, chronic bronchitis,
(small) airway remodeling and/or destruction of alveolar tissue
(emphysema) (9). The major risk factor for developing COPD
is chronic exposure to noxious particles and gases such as
cigarette smoke, air pollution and occupational exposures. In
COPD, the exposure to those noxious particles and gases
leads to pulmonary infiltration of predominantly neutrophils
and CD8+ T lymphocytes. Furthermore, macrophages play
a major role in the inflammatory response in COPD, upon

Abbreviations: BALF, Bronchoalveolar lavage fluid; C/EBPα, CCAAT enhancer
protein α; CCL3, C-C Motif Chemokine Ligand 3; CDK2, Cyclin-dependent
kinase 2; CFTR, Cystic fibrosis transmembrane conductance regulator; COPD,
Chronic obstructive pulmonary disease; CUL1, Cullin 1; CXCL2, C-X-C Motif
Chemokine Ligand 2; EPB41L3, Erythrocyte membrane protein band 4.1 like
3; HBECs, Human bronchial epithelial cells; HDAC2, Histone deacetylase 2;
ICAM-1, Intercellular adhesion molecule 1; ICS, Inhaled corticosteroids; IGF-1R,
Insulin-like growth factor-1 receptor; IKKα, IκB kinase α; IL-6, Interleukin-6; LPS,
Lipopolysaccharide; Mef2c, Myocyte enhancer factor 2c; MiRNAs, MicroRNAs;
mRNA, Messenger RNA; NF-κB, Nuclear factor kappa B; NFI-A, Nuclear factor
I A-type; NLRP3, NLR family pyrin domain containing 3; OVA, Ovalbumin;
PARP-1, Poly (ADP-ribose) polymerase 1; PBMCs, Peripheral blood mononuclear
cell; RhoB, Rho-related GTP binding protein; RT-qPCR, Quantitative real time
polymerase chain reaction; SNP, Single nucleotide polymorphism; STAT3, Signal
transducer and activator of transcription 3; TAB2, TGF-beta activated kinase 1
(MAP3K7) binding protein 2; TGF-β, Transforming growth factor β; TGFBR3,
TGF-β receptor 3; Th2, T helper 2; TRAF6, Tumor necrosis factor receptor
associated factor 6.

activation macrophages release several cytokines and matrix
metalloproteases (10). In the lung of severe COPD patients
increased B cell counts and increased number and size of B-
cell rich lymphoid follicles have been found (11). The major
treatment in COPD patients is long-acting bronchodilators
and ICS. However, COPD patients are less sensitive to ICS
compared to allergic asthma patients (10). In asthma and
COPD, current treatments relieve symptoms and prevent
exacerbations, however, they cannot counteract the underlying
disease process.

MicroRNAs (miRNAs) are small, non-coding RNA
molecules with a length of 21–25 nucleotides. MiRNAs can
control gene expression by targeting specific mRNAs for
degradation or translational repression. MiRNAs bind to
a specific sequence at the 3′UTR of the target messenger
RNA (mRNA). The complementary sequences between
miRNA and mRNA are usually not fully overlapping,
implicating that each miRNA can regulate hundreds of
target genes and that several miRNAs can target the same
mRNAs (12).

MiRNAs are involved in multiple biological processes
including inflammation, cell proliferation, differentiation, and
death and may thus regulate various pathological processes
(13). Indeed, miRNAs have been implicated in many diseases.
Furthermore, miRNAs are present in bodily fluids due to active
secretion from living cells in microvesicles, secretion from
cells with RNA-binding proteins or leakage of microvesicles
from death cells (14). Due to stability and high expression
of miRNAs in bodily fluids, they can be potential biomarkers
in asthma and COPD. As mentioned above, the development
of asthma and COPD is the consequence of an interaction
between genetic and environmental factors. By regulating
gene expression, miRNAs may constitute an important link
between the factors involved in the development of obstructive
lung disease.

In this review, we will focus on the potential role of miR-
223 in the pathogenesis of asthma and COPD, since miR-
223 is differentially expressed in various tissues from asthma
patients compared to healthy controls and is among the highest
differentially expressed miRNA in COPD patients. Furthermore,
miR-223 has a crucial role in innate immunity, myeloid cell
differentiation, and cell homeostasis and has several targets that
are involved in pathways implicated in the pathogenesis of
both asthma and COPD. Finally, miR-223 is easily detectable in
multiple human samples (e.g., sputum, bronchial biopsies, and
blood) and could therefore serve as a potential biomarker.

ORIGIN OF miR-223 AND ROLE IN
HAEMATOPOIESIS

Although the role of miR-223 in hematopoietic cell development
and innate and adaptive immune responses has recently been
extensively reviewed by others (15), we shortly summarize the
most important findings with regard to the role of miR-223
in hematopoiesis. MiR-223 is transcribed from an independent
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promoter located on the X chromosome and is mainly expressed
by hematopoietic cells (16). Whereas, levels of miR-223 are low
in pluripotent hematopoietic stem cells and common myeloid
progenitors, miR-223 expression is induced upon myeloid
differentiation (17). In humans, the expression of miR-223
is controlled by two transcriptional factors that compete for
binding to the miR-223 promoter, namely nuclear factor I
A-type (NFI-A) and CCAAT enhancer protein α (C/EBPα).
Under resting conditions, NFI-A is bound to the miR-223
promoter, maintaining low expression of miR-223. During
granulocytic differentiation, NFI-A is released from the miR-
223 promoter and replaced by C/EBPα, resulting in upregulation
of miR-223 expression (16). Interestingly, one of the target
genes of miR-223 is NFI-A, implicating that upregulation of
miR-223 dampens the expression of NFI-A, resulting in a
positive feedback loop. In line with a role of miR-223 in
myeloid differentiation, overexpression of miR-223 induces the
monocytic and granulocytic differentiation marker CD11b, while
inhibition of miR-223 was shown to reduce the expression of
CD11b in promyelocytic leukemia cells (16). In addition to the
importance in myeloid differentiation, miR-223 is involved in
erythropoiesis by dampening the gene expression and protein
translation of LIM-only protein 2, a positive regulator of
erythropoiesis (18, 19).

MiRNA profiling in human blood demonstrated that miR-
223 is expressed in hematopoietic stem cells, granulocytes,
dendritic cells and monocytes, while lower levels of miR-223
were also found in naïve and memory T cells (16, 20, 21). In
induced sputum high expression of miR-223 was measured in
monocytes, macrophages and neutrophils (22). Furthermore, in
situ hybridisation in human bronchial biopsies showed that miR-
223 expression was mainly expressed in neutrophils localized in
the lamina propria (22).

In this review, we will use findings of in vivo murine
models to provide mechanistic insight into how miR-223 can
contribute to the pathogenesis of asthma and COPD. In mice, the
regulation ofmiR-223 expression is slightly different compared to
humans. The myeloid differentiation factors PU.1 together with
C/EBPβ enhance the activity of the miR-223 promoter, whereas
erythroid transcription factor GATA binding protein 1 represses
the miR-223 promoter (23). Depletion of miR-223 in a mouse
model does not result in apparent developmental abnormalities,
however granulocyte hyperplasia has been observed in the bone
marrow (17). The increased numbers of neutrophils in miR-
223 deficient mice display morphological changes, including
nuclear hypersegmentation and blebbing and are hyperactivated
as demonstrated by their increased superoxide production (17).
Similar to humans, granulocyte-monocyte progenitors express
low levels of miR-223 in blood and bone marrow obtained from
mice, but during myeloid differentiation the expression levels
of miR-223 are increased. Expression of miR-223 is highest in
mature neutrophils, whereas B- and T-cells barely express miR-
223 (17, 24, 25).

In summary, the expression of miR-223 is controlled by
both enhancers and repressors, is low in haematopoietic
progenitor cells and increased during granulopoiesis, indicating
its importance in the control of cell homeostasis.

EXPRESSION OF miR-223 IN ASTHMA
AND COPD

As described above, miR-223 is mainly expressed in myeloid
cells and may play a role in innate immunity. Therefore, several
studies investigated the expression of miR-223 in asthma and
COPD patients (Table 1). The first report on miRNA profiling in
asthma patients, where miR-223 was mentioned, was performed
in bronchial biopsies of eight mild atopic asthmatic patients and
eight healthy controls using a miRNA array. No difference in
miRNA expression was observed between asthma patients and
healthy controls (26). However, miR-223 was one of highest
expressed miRNAs in biopsies and was shown to be expressed
in macrophages (26). No differences in miR-223 expression were
found in an additional study on bronchial biopsies from 12 mild
and 12 severe asthma patients compared to healthy controls
using quantitative real time polymerase chain reaction (27),
which may be due to the low sample size. In larger cohorts and
more specific compartments differences in miR-223 expression
between asthma patients and healthy controls were identified.
MiRNAprofiling in bronchial brushings obtained from 16 steroid
naive asthmatics compared to 12 healthy controls demonstrated
higher expression of miR-223 in asthma patients compared
to healthy controls (28). Two independent asthma cohorts
showed that miR-223 is higher expressed in induced sputum
supernatant of severe asthma patients compared to healthy
controls (22). Moreover, after subdividing the asthma groups into
neutrophilic and eosinophilic asthma based on the percentage
sputum neutrophils and eosinophils, increased miR-223 levels
were found in neutrophilic asthma patients compared to healthy
controls and eosinophilic asthmatics. Furthermore, miR-223 was
negatively associated with FEV1, FEV1/FVC ratio, and positively
associated with the percentage neutrophils in sputum (22). A
recent study by Gomez et al. found almost similar results, miR-
223 expression was increased in sputum of asthma patients
and was associated with a neutrophilic asthma phenotype.
Furthermore, miR-223 expression levels were also correlated with
multiple features of severe asthma, bronchodilator response, and
FeNO levels (29). In contrast, in a study using blood samples,
miR-223 expression was lower in blood-derived T cells frommild
to moderate asthma patients compared to healthy controls (21).
Another study found that in utero exposure to cigarette smoke
increases the risk of developing allergic sensitization, which was
associated with lower levels of regulatory T cells and with high
miR-223 expression in cord blood (34).

With regard to smoking andCOPD, lowermiR-223 expression
levels have been observed in bronchial brushings from current
smokers compared to never smokers (30). Ezzie et al. focusing
on differentially expressed miRNAs in lung tissue of smokers
with or without COPD, demonstrated higher miR-223 expression
in COPD patients compared to smokers without COPD (31).
Furthermore, higher levels of miR-223 were also measured
in bronchoalveolar lavage fluid (BALF) obtained from COPD
patients compared to non-COPD controls (32). In serum of
women with COPD due to biomass smoke, miR-223 levels
are higher compared to healthy controls exposed to biomass
smoke (33).
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TABLE 1 | Overview of miR-223 expression in asthma and COPD patients compared to controls.

Feature Participants Controls Findings Method References

Asthma 8 mild atopic asthma patients 8 healthy controls Not differentially expressed

in bronchial biopsies

RT-qPCR (26)

12 mild to moderate asthma patients,

12 severe asthma patients

10 healthy controls Not differentially expressed

in bronchial biopsies

RT-qPCR (27)

16 steroid naive atopic asthma patients

with bronchial hyperresponsiveness

12 healthy controls ↑ in bronchial airway

epithelial cells

Micro-array (28)

16 eosinophilic asthma patients,

8 neutrophilic asthma patients

10 healthy controls ↑ in induced sputum supernatant of

neutrophilic asthma patients

Micro-array (22)

29 eosinophilic asthma patients,

21 neutrophilic asthma patients

10 healthy controls ↑ in induced sputum supernatant of

neutrophilic asthma patients

RT-qPCR (22)

62 asthma patients 9 controls ↑ in induced sputum of asthma patients HiSeq

Sequencing

(29)

12 mild to moderate

asthma patients

10 healthy controls ↓ in blood circulating naive and

memory T cells

Micro-array (21)

Smoke exposure 10 current smokers 10 non-smokers ↓ in bronchial airway

epithelial cells

Micro-array (30)

COPD 26 COPD patients 9 normal smokers ↑ in lung tissue Micro-array/

RT-qPCR

(31)

23 COPD patients 16 non-COPD controls ↑ in bronchoalveolar

lavage fluid

Micro-array (32)

25 female COPD patients exposed to

biomass smoke

25 female healthy

controls exposed to

biomass smokes

↑ in serum Micro-array/

RT-qPCR

(33)

Taken together, it is clear that miR-223 expression is
differently expressed in obstructive lung disease and seems
to be associated with neutrophilia (Table 1). However, thus
far miR-223 expression was associated with an inflammatory
phenotype in only two asthma studies (22, 29). In mild atopic
asthma patients the increase in miR-223 could also originate
from an eosinophilic component, since both neutrophils and
eosinophils were present in the bronchial brushings (28).
With regard to COPD, no data are available that link miR-
223 expression to disease stage, inflammatory phenotype or
presence of emphysema. Furthermore, (biomass) smoke can
alter the expression of miR-223, which together with differences
in examined samples and patient groups further adds to the
complexity of the observed findings.

ROLE OF miR-223 IN THE PATHOLOGICAL
PROCESSES IN CHRONIC OBSTRUCTIVE
LUNG DISEASE

Both asthma and COPD are characterized by inflammatory
responses and airway remodeling upon environmental
exposures. In the paragraphs below we will describe how
miR-223 can influence these processes. The role of miR-223 in
regulating inflammation and cell proliferation, differentiation
and death was reviewed before (15), but here we focus on
the potential implications for asthma and COPD. We will use
findings from in vivo murine models of infection and acute lung
injury to speculate on the importance of miR-223 in asthma and
COPD and highlight several of the miR-223 targets, which have

been validated by luciferase assays (Table 2). Furthermore, we
review findings obtained from in vitro studies, which are often
within the context of cancer, but can also be relevant within
the context of asthma and COPD. Table 3 gives a summary
of the experiments done for miR-223 in each cell type and
the expression of this target gene in asthma and/or COPD.
Furthermore, Figure 1 shows an overview of the potential roles
of miR-223 in the pathogenesis of asthma and COPD.

Role of miR-223 in Inflammatory
Responses
Several studies have demonstrated increased levels of miR-223
in blood samples and/or inflamed lung samples from mice that
were exposed to allergens, bacteria, viruses, or fungi compared
to samples from untreated mice, all relevant exposures for
the development of obstructive lung disease (35, 42, 43, 75,
76). In this section we will overview the role of miR-223 in
inflammatory responses.

Role of miR-223 in the Nuclear Factor Kappa B

Pathway
The nuclear factor kappa B (NF-κB) pathway plays a major role
in inflammatory responses by regulating cell survival, activation,
and differentiation of immune cells. The activation of NF-
κB induces expression of various pro-inflammatory genes and
inflammasome activation (77). In bronchial biopsies obtained
from asthma and COPD patients, NF-κB is activated upon
exposure to various environmental triggers, leading to pro-
inflammatory responses (51) and therefore the activation of
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TABLE 2 | Overview of the validated target genes of miR-223.

Gene Full gene name Function Species References

NFI-A Nuclear Factor I A-type Transcription factor Human (16)

LMO2 LIM-only protein 2 Erythropoeisis regulator Human (18, 19)

PARP-1 poly(ADP-ribose) polymerase 1 Regulator in cell death and NF-κB activity Human (35)

IKKα IkB kinase α Regulator of NF-κB pathway Human (36)

CUL1 Cullin 1 Protein degradation and ubiquitination Human (37)

TAB2 TGF-β-activated kinase 1/MAP3K7 Activation of MAP3K7 in the IL-1 signaling pathway Human (37)

NLRP3 NLR family pyrin domain containing 3 Pattern recognition receptor Human (24, 38, 39)

RhoB Rho-related GTP-binding protein Small signaling G protein Human (39)

CFTR CF transmembrane conductance regulator Chloride channel Human (40)

STAT3 Signal transducer and activator of transcription 3 Mediating anti- and pro-inflammatory responses Human (41)

CXCL2 C-X-C Motif Chemokine Ligand 2 Neutrophil chemo-attractant Human (42)

CCL3 C-C Motif Chemokine Ligand 3 Neutrophil chemo-attractant Human (42)

IL-6 Interleukin-6 Pro-inflammatory cytokine Human (42)

HDAC2 Histone deacetylase 2 Deacetylation of lysine Human (43)

Mef2c Myocyte enhancer factor 2c Promotes proliferation of myeloid progenitors Human (17)

IGF-1R Insulin-like growth factor-1 receptor Activates PI3K-Akt and mTOR signaling Human (17, 44–46)

TGFBR3 Transforming growth factor beta receptor III TGF-β signaling Human (47)

CDK2 Cyclin-dependent kinase 2 Cell cycle Human (45)

p53 Tumor Protein P53 Tumorsuppressor gene Human (48)

EPB41L3 Erythrocyte Membrane Protein Band 4.1 Like 3 Cell proliferation, cell-cell contact Human (49)

ICAM-1 Intercellular adhesion molecule 1 Role in leukocyte trafficking Human (50)

miR-223 validated targets by luciferase assays. The luciferase assay determine whether a specific miRNA controls the expression of a potential target gene. The 3′UTR of the potential

target gene is cloned into the 3′ region of a luciferase reporter plasmid and co-transfected with the predicted miRNA, leading to repression of luciferase gene expression if the miRNA

directly binds to the 3′-UTR.

NF-κB may be a critical component of the pathogenesis of
both diseases.

Several studies suggest that miR-223 is a negative regulator
of NF-κB signaling. While overexpression of miR-223 in human
bronchial epithelial cells (HBECs) decreased NF-κB activity,
downregulation of miR-223 in HBECs resulted in increased NF-
κB activity after Pseudomonas aeruginosa stimulation (37). One
of the targets of miR-223 involved in the activation of NF-κB
pathway is poly (ADP-ribose) polymerase 1 (PARP-1). PARP-1
influences expression of various pro-inflammatory factors and
chromatin remodeling, which promotes inflammation (78).

Overexpressing miR-223 in HBECs downregulates PARP-1
expression (22). With regard to the pathogenesis of asthma,
it was demonstrated that PARP-1 deficiency in OVA-induced
allergic mouse models leads to a reduction of eosinophilia
and Th2 cytokine production (79, 80). Furthermore, PARP-1
downregulates STAT-6, leading to downregulation of GATA-
3, which is crucial in promoting type 2 differentiation and
expression of IL-4, IL-5, and IL-13 (79). Of note, multiple
in vivo and in vitro studies found contradicting results on
PARP-1 inhibition and IL-17 levels, which is important for the
recruitment of neutrophils (78). An in vivo study found elevated
IL-17 levels in serum but decreased levels of GM-CSF, IL-22, and
KC in BAL and increased levels of regulatory T cells in the spleen
of PARP-1 deficient mice exposed to HDM. This suggest that
PARP-1 depletion resulted in an anti-inflammatory effect (52).
Similar to NF-κB, PARP-1 activity is increased in asthma patients,
which was measured in peripheral blood mononuclear cells and

lung tissue compared to controls (52). Based on the evidence
that miR-223 is especially increased in sputum supernatant of
neutrophilic asthma patients compared to healthy controls and
eosinophilic asthma patients (22), we suggest that miR-223 acts as
amodulator to limit PARP-1 expression, controlling eosinophilic,
and neutrophilic responses in asthma. Therefore, it would be
of interest to investigate the levels of PARP-1 in eosinophilic
and neutrophilic inflammation in asthma and associate this with
miR-223 expression. The activity of PARP-1 in COPD patients is
systematically increased (53). In vivo experiments demonstrated
that PARP-1 inhibition protects against emphysema and elastase
induced-inflammation (81) and in vitro experiments showed that
PARP-1 is activated upon cigarette smoke and oxidative stress
(82). Furthermore, in an acute lung injury model with miR-223
deficiency, repression of PARP-1 reversed acute lung injury (35).
However, the exact role of PARP-1 in COPD has not been well-
addressed. Therefore, further studies are needed to identify the
role and relationship of miR-223 and PARP-1 in COPD and its
involvement in specific disease phenotypes.

Another target of miR-223 involved in the activation of
NF-κB is IκB kinase α (IKKα), which together with IKKβ

forms the IKK kinase complex (36). Amongst others, the
exposure to bacteria and viruses can induce phosphorylation
of the IKK kinase complex, resulting in NF-κB activation
(83). Moreover, IKKα is a transcriptional regulator of Th17
differentiation by interacting with the RORγt transcription factor
(84), and inhibition of IKKα results in lower levels of Th17
cells (85). During in vitro differentiation of human monocytes to
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TABLE 3 | Overview of miR-223 experiments and their expression in asthma and COPD.

Overview of miR-223 experiments Expression of target genes in asthma and COPD

Expression of

miR-223

Cell type Condition References Asthma COPD References

Downregulation

miR-223

HBECs ↑ NF-kB

activity

(37) ↑ NF-kb activity in HBECs ↑ NF-kb activity in

HBECs

(51)

Overexpression of

miR-223

HBECs ↓ PARP-1 (22) ↑ PARP-1 activity in PBMCs

and lung tissue

↑ PARP-1 activity in

blood

(52, 53)

Reduction of

miR-223

Monocytes/Macrophages ↑ IKKα (36) No differences in PBMCs

No differences in IKKα

activity in PBMCs

No differences in

PBMCs

↑ IKKα activity in

PBMCs

(54)

Downregulation

miR-223

Basal epithelial cells of

zebrafish

↑ TRAF6 (37) No differences in PBMCs NA (55)

Downregulation

miR-223

HBECs ↑ CUL1 (37) NA NA

Downregulation

miR-223

HBECs ↑ TAB2 (37) NA NA

Overexpression of

miR-223

Murine neutrophils/A549

cells

↓ NLRP3 (24) ↑ NLRP3 in sputum of

neutrophilic asthma patients

↑ NLRP3 in PBMCs

No differences in

HBECs

(56, 57)

Overexpression of

miR-223

A549 cells ↓ RhoB (39) NA NA

Knock out of

miR-223

Murine lung ↑ IL-6 (42) ↑ IL-6 BALF and sputum ↑ IL-6 BALF and

sputum

(8)

Knock out of

miR-223

Murine lung ↑ CCL3 (42) ↑ CCL3 in BALF and CD4+

T cells

No differences in BALF

↑ CCL3 in CD8+ T-cells

↑ CCL3 in sputum (58–62)

Knock out of

miR-223

Murine lung ↑ CXCL2 (42) NA ↑ CXCL2 in lung tissue (63, 64)

Overexpression of

miR-223

Murine macrophages ↓ STAT3 (41) ↑ STAT3 activity in airway

smooth muscle cells

↑ STAT3 in lung tissue (65–67)

Overexpression of

miR-223

Human coronary artery

endothelial cells

↓ ICAM-1 (50) ↑ ICAM-1 in blood, BALF

and nasal lavage fluid

↑ ICAM-1 in lung tissue (64, 68)

Overexpression of

miR-223

human pulmonary artery

endothelial cells

(HPAEC)

↓ HDAC2 (43) NA ↓ HDAC2 activity in

lung tissue and alveolar

macrophages

(69)

Knock out of

miR-223

T cells ↓ Mef2c (17) ↓ Mef2c in HBECs NA (70)

Overexpression of

miR-223

Human adenocarcinoma ↓ IGF-1R (44) ↑ IGF1 signaling in bronchial

biopsies

↓ IGF-1 in serum

↑ IGF-1 in quadriceps

(44, 57, 61)

Knock out of

miR-223

Neutrophils ↑ IGF-1R (17)

Overexpression of

miR-223

Airway smooth muscle

cells

↓ IGF-1R (46)

Overexpression of

miR-223

Lewis lung carcinoma

cells

↓ IGF-1R (45)

Overexpression of

miR-223

A549 cells ↓ TGFBR3 (47) ↓ TGFBR3 in blood ↓ TGFBR3 in severe

COPD patients

(71, 72)

Downregulation

miR-223

SPC-A1 lung cancer

cells

↑ TGFBR3 (47)

Overexpression of

miR-223

Human lung squamous

cell carcinoma cells

↓ p53 (48) NA ↑ p53 in lung tissue (73, 74)

Overexpression of

miR-223

Lewis lung carcinoma

cells

↓ CDK2 (45) NA NA

BALF, Bronchoalveolar lavage fluid; CCL3, Chemokine (C-C motif) ligand 3; CDK2, Cyclin-dependent kinase 2; CUL, cullin 1; CXCL2, CXCL2, Chemokine (C-X-C motif) ligand 2;

HBECs, human bronchial epithelial cells; HDAC2, histone deacetylase 2; ICAM-1, Intercellular adhesion molecule 1; IGF-1R, insulin-like growth factor-1 receptor; IKKα, IκB kinase α;

IL-6, Interleukin-6; Mef2c, Myocyte Enhancer Factor 2C; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; PARP-1, Poly [ADP-ribose] polymerase 1; PBMCs, Peripheral

blood mononuclear cell; RhoB, Rho-related GTP binding protein; STAT3, Signal transducer and activator of transcription 3; TAB2, TGF-Beta Activated Kinase 1 (MAP3K7) Binding

Protein 2; TGFBR3, Transforming growth factor beta receptor III; TRAF6, TGF-beta activated kinase 1 binding protein 2.
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FIGURE 1 | Overview of validated targets of miR-223. This overview illustrates all validated targets genes of miR-223 that could contribute to the pathogenesis of

asthma and COPD. There were no studies that investigated validated targets of miR-223 in T-cells and eosinophils. The red cross indicates that miR-223 targets this

gene and/or protein. CCL3, Chemokine (C-C motif) ligand 3; CUL1, cullin 1; CDK2, Cyclin-dependent kinase 2; CFTR, cystic fibrosis transmembrane conductance

regulator; CXCL2, Chemokine (C-X-C motif) ligand 2; EPB41L3, erythrocyte membrane protein band 4.1 like 3; HDAC2, histone deacetylase 2; ICAM-1, Intercellular

adhesion molecule 1; IGF-1R, insulin-like growth factor-1 receptor; IKKα, IκB kinase α; IL-6, Interleukin-6; Mef2c, Myocyte Enhancer Factor 2C; NLRP3, NOD-, LRR-

and pyrin domain-containing protein 3; PARP-1, Poly [ADP-ribose] polymerase 1; RhoB, Rho-related GTP binding protein; STAT3, Signal transducer and activator of

transcription 3; TAB2, TGF-Beta Activated Kinase 1 (MAP3K7) Binding Protein 2; TGFBR3, Transforming growth factor beta receptor III.

macrophages, the reduction of miR-223 expression is associated
with elevated IKKα levels (36). Upon TLR9 activation, higher
levels of IKKα and reduced levels of several pro-inflammatory
mediators have been found in bone marrow-derived miR-
223 KO neutrophils compared to WT neutrophils (86). In
asthma and COPD patients, IKKα levels were not different
in peripheral blood mononuclear cells compared to healthy
controls. However, higher p-IKKα levels were found in peripheral
blood mononuclear cells of COPD patients and control smokers
compared to asthma patients and non-smoking controls (54).

Recent studies showed that other miR-223 targets involved in
the NF-κB activation are TGF-beta activated kinase 1 binding
protein 2 (TRAF6), cullin 1(CUL1), and TGF-beta activated
kinase 1 (MAP3K7) binding protein 2 (TAB2) (37, 87). Inhibition
of miR-223 in basal epithelial cells from zebrafish induced
TRAF6, CUL1, and TAB2 (37). TRAF6 is an intracellular
signaling molecule mediating NF-κB activation by toll-like
receptor activation of dendritic cells. Depletion of TRAF6 in
dendritic cells resulted in higher infiltration of eosinophils in lung
tissue and higher levels of IL-5, IL-13, and IGF-1 in an OVA-
induced mouse model (88). This suggests that downregulation
of TRAF6 by miR-223 contributes to Th2 responses. Moreover,
in HBECs overexpression of miR-223 reduced NF-κB activity

by targeting CUL1 and TAB2 (37). Furthermore, miR-223
knockdown in zebrafish leads to upregulation of Cul1 expression,
and subsequent higher neutrophil recruitment after wounding
compared to controls (37). This indicates that in in vivo
models miR-223 contributes to homeostasis of neutrophils
and eosinophils.

In two different asthma cohorts, there were no significant
differences in TRAF6 gene expression in PBMCs-derived from
steroid naïve asthmatic children compared to healthy controls
(55). For CUL1 and TAB2, it is unknown if there are any
differences in expression between asthma, COPD patients, and
healthy controls. Therefore, despite evidence from experimental
studies, the effect of miR-223 on the target genes IKKα, TRAF6,
and CUL1 in asthma and COPD patients, and whether their
regulation contributes to the pathogenesis of these diseases,
remains unclear.

Role of miR-223 in the IL-1 Signaling Pathway
NF-κB activation results in expression of several genes including
the inflammasome NLR family pyrin domain containing 3
(NLRP3). Activation of the NLRP3 inflammasome leads to
cleavage of pro-IL-1β and pro-IL-18 by caspase-1 into mature
IL-1β and IL-18. IL-1β is a cytokine involved in the initiation
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and persistence of inflammation. NLRP3 can be activated by
cigarette smoke, lipopolysaccharide (LPS), bacterial and viral
exposures (89) and is identified in airway epithelial cells and
peripheral blood neutrophils (90). Yuan et al. already highlighted
that miR-223 represses NLRP3 function (15). Here we will focus
on the role of miR-223 and NLRP3 in the context of asthma
and COPD. In sputum of neutrophilic asthma patients excessive
inflammasome activation and production of IL-1β have been
found, which correlate with neutrophil counts in lung tissue
and sputum, asthma severity, and steroid resistance in asthma
(56, 90, 91). As well-increased gene expression of NLRP3, IL-
1β , and IL-18 has been found in PBMCs from COPD patients
compared to smokers (92), while no differences of NLRP3, IL-
1β, and IL-18 in bronchial epithelial were observed in severe
stable COPD patients compared to current smokers (93), see also
Table 3. This indicates that IL-1β and NLRP3 play an important
role in neutrophilic asthma inflammation and in COPD.

Multiple in vitro and in vivo studies demonstrated that miR-
223 targets NLRP3, resulting in reduced inflammation (24, 38, 39,
75). Overexpression of miR-223 in murine neutrophils reduces
the activity of NLRP3, leading to less secretion of IL-1β (24),
while miR-223 deficient mice have increased levels of NLRP3
in bone-marrow-derived neutrophils (75). However, NLRP3 or
caspase-1 deficient mice still have acute pulmonary inflammation
upon cigarette exposure (94). A recent study showed that
overexpression of miR-223 in human adenocarcinoma alveolar
basal epithelial cells reduced caspase-1, IL-1β, and IL-18 levels by
targeting NLRP3 and rho-related GTP-binding protein (RhoB)
after LPS stimulation (39). In addition, mice infected with
Klebsiella pneumoniae and treated withmicrovesicles loaded with
miR-223/miR-142 display reduced levels of caspase-1 activity in
lung and reduced levels IL-1β and IL-18 in BALF, which the
authors suggest is probably caused by targeting NLRP3 (38).
Similar results were recently found in an acute and chronic liver
injury mouse model, where a miR-223 mimic reduced NLRP3
and IL-1β expression in mice with endotoxin-induced acute
hepatitis and diet-induced chronic fibrosis. Furthermore, this
miR-223 mimic also led to less infiltration of macrophages and
neutrophils in the liver, possibly due to the lower NLRP3 and IL-
1β levels (95). An interesting finding is that in vitro stimulation
of a bronchial epithelial cell line carrying a mutation in cystic
fibrosis transmembrane conductance regulator (CFTR) gene with
IL-1β induces miR-223 expression. Furthermore, they showed
that CFTR is a validated target of miR-223 (40), which could be
important since recently a link between CFTR and the chronic
bronchitis phenotype in COPD was proposed (96).

In contrary to in vitro studies, the mechanisms mediating
NLRP3 and IL-1β expression in obstructive lung diseases are
more complex and the higher levels of miR-223 in neutrophilic
asthma patients and COPD patients may not be sufficient to
reduce pro-inflammatory gene expression as is observed in
experimental studies.

Role of miR-223 During Infections
Infection can contribute to the development of asthma (97) and
cause asthma and COPD exacerbations (97, 98). The impact of
miR-223 deficiency on combatting infections, however differs

depending on the model system and stimulus. In vitro, miR-
223 deficient neutrophils have enhanced capacity to kill Candidia
albicans compared to WT (wild type) neutrophils (17). However,
in vivo infections with mycobacterium tuberculosis in miR-223
deficient mice leads to much higher mortality in contrast to WT
littermates, while depletion of polymorphonuclear neutrophils
upon infection prolonged the survival of miR-223 deficient
littermates (42). In latter study, high bacterial burden, more
neutrophils, and increased levels of the validated targets IL-
6, C-C Motif Chemokine Ligand 3 (CCL3), and C-X-C Motif
Chemokine Ligand 2 (CXCL2) were observed in the lung of miR-
223 deficient mice compared to WT animals (42). Notably, in all
models of infection and acute lung injury increased inflammation
was found in miR-223 deficient mice compared to WT mice
(17, 42, 75). This confirms the notion that miR-223 can have a
protective role in lung inflammation upon microbial challenge,
which could also be relevant in asthma and COPD.

As mentioned, miR-223 expression affected IL-6, Cxcl2, and
Ccl3 levels in the above described mycobacterium tuberculosis
model (42). This is of interest, since IL-6 is also increased in
BALF and induced sputum of asthmatics and COPD patients
(8). IL-6 plays a role in the expansion of Th2 and Th17
cells, which play a role in airway inflammation in (severe)
asthma and/or COPD. Furthermore, CCL3 (MIP-1α) and
CXCL2 (MIP-2) are important mediators in asthma and COPD
because they are chemoattractant for monocytes/macrophages
and neutrophils. In asthma, the reports on CCL3 expression
are not univocal, as increased as well as equal and reduced
CCL3 levels have been found depending on the patient cohort,
investigated sample or cell type (Table 3) (58–61). In COPD,
higher levels of CCL3 were detected in sputum of COPD
patients compared to healthy non-smokers and smokers, which
correlate with IL-6 and sIL-6R levels in sputum of COPD
patients (62, 99). This indicates that elevated miR-223 expression
levels in asthma and COPD could thus influence monocytic
inflammatory responses. With regard to CXCL2, little is known
in asthma but it has been associated with a neutrophilic
phenotype in mouse models (100). In COPD patients CXCL2
gene expression is upregulated in lung tissue compared to
controls (63, 64).

Another target of miR-223, which can also be activated by IL-
6 and CXCL2 signaling, is STAT3. Overexpression of miR-223
in murine macrophages (Raw264.7) resulted in reduced levels of
IL-6 and IL-1β upon LPS and poly(I:C) stimulation by targeting
STAT3 (41). STAT3 signaling contributes to the induction and/or
response of Th2 and Th17 cells (101–104). Asthma patients have
increased STAT3 activity in airway smooth muscle cells (65)
and COPD patients have increased STAT3 levels in lung tissue
compared to controls (66, 67). Furthermore, a single nucleotide
polymorphism (SNP) of STAT3 has been associated with atopic
-but not with non-atopic asthma- in children (105). Whether
miR-223 modulates STAT-3 in asthma and COPD and whether
it is involved in neutrophilic or eosinophilic responses remains
to be determined. Finally, miR-223 can also influence release
of neutrophils into tissues by reducing the expression of cell
adhesion molecule-1 (ICAM-1) in endothelial cells (50). ICAM-
1 expression is increased in blood, BAL, and nasal lavage fluid of
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asthma patients and in lung tissue of COPD patients compared
to controls (64, 68).

Taken together, miR-223 targets multiple genes that are
involved in the recruitment and activation of neutrophils and
monocytes/macrophages, and expansion of Th2 and Th17 cells.

The Influence of miR-223 on Epigenetic Alterations
Most studies demonstrated that miR-223 is involved in the NF-
κB pathway and has an anti-inflammatory function. However,
Leuenberger et al. showed that miR-223 can cause epigenetic
changes by targeting histone deacetylase 2 (HDAC2), resulting
in activation of the NF-κB pathway. HDAC2 is necessary to
deacetylate histones resulting in suppression of several activated
inflammatory genes. Increased expression of miR-223 and
decreased expression of HDAC2 were found in endothelial
cells after stimulation with tumor necrosis factor-α and IL-1β.
Furthermore, decreased levels of HDAC and HDAC2 activity
were demonstrated in endothelial cells overexpressing miR-
223, leading to unwinding of chromatin and activation of
several proinflammatory cytokines and chemokines (43, 69).
An in vivo study showed that heterozygous HDAC2 mutant
mice have increased inflammatory responses, cellular senescence,
airspace enlargement, and lung function decline after chronic
cigarette exposure, compared to WT mice (106). Moreover, an
earlier study found that COPD patients have lower HDAC2
activity in lung tissue and alveolar macropahges compared
to healthy controls and that the severity of the disease
is negatively correlated with HDAC2 activity (69). HDAC2
activity is an important regulator of corticosteroid sensitivity
(107). COPD and asthma patients with lower HDAC2 activity
compared to healthy controls are less sensitive to corticosteroids
than patients with higher HDAC2 activity levels (108, 109).
Overexpression of HDAC2 in alveolar macrophages can restore
the corticosteroid sensitivity (69). This indicates that elevated
miR-223 expression by e.g., neutrophils contributes to the
insensitivity of corticosteroids in asthma and COPD patients
by modulating HDAC2, which can worsen the severity of the
disease. Notably, early-onset allergic eosinophilic asthmatics
are generally corticosteroid-sensitive. It will be interesting to
investigate how miR-223 expression correlates with HDAC2
expression in these patients.

Overall Conclusions for a Role of miR-223 in

Inflammatory Pathways
Overall, previous paragraphs indicate that miR-223 mainly
acts as an anti-inflammatory miRNA. Several studies showed
that depletion of miR-223 resulted in enhanced inflammatory
responses, while overexpression of miR-223 reduced pro-
inflammatory responses. Moreover, miR-223 targets multiple
genes that are involved in the NF-κB pathway, e.g., PARP1, IKKα,
TRAF6, CUL1, and TAB2. Based on the evidence that miR-223 is
increased in multiple samples from asthma and COPD patients,
we propose a model where miR-223 acts as a protective miRNA
to reduce/prevent pro-inflammatory responses. The increased
levels of miR-223 could inhibit PARP-1 levels and modulate
the balance of neutrophilic/eosinophilic responses. However, the
higher levels of miR-223 in neutrophilic asthma patients may

not be sufficient to reduce the levels of IL-6, CCL3, and CXCL2,
which contribute to Th17 responses. Since most of the target
genes of miR-223 are elevated in asthma and COPD, it might be
that the protective effect of miR-223 is impaired or not sufficient
to reduce the high inflammatory responses in asthma and COPD,
possibly by changes in the local tissue compartments. Another
explanation for increased expression of miR-223 target genes in
asthma and COPD may be that miR-223 also targets HDAC2,
which is important for corticosteroid sensitivity. In asthma
and COPD patients with high miR-223 levels, the reduction in
HDAC2 could lead to lower corticosteroid sensitivity and less
reduction of pro-inflammatory cytokines and chemokines in
response to corticosteroids. However, until now it is unknown
if there is a direct link between miR-223 levels in the different
disease phenotypes and corticosteroid sensitivity due to HDAC2.

Further studies should direct how miR-223 is involved
in the pathogenesis of asthma and COPD, since the effects
of altered miR-223 expression levels on pro-inflammatory
responses remain enigmatic.

Role of miR-223 in Cell Proliferation,
Differentiation, and Death
In addition to the function of miR-223 in inflammatory
processes, several studies have demonstrated that miR-223
contributes to cell proliferation, differentiation, and death. Cell
dysfunction and death are also important features in asthma
and COPD. In asthma dysregulated apoptosis has been found
in T cells, eosinophils, and neutrophils (110). However, the
exact contribution of apoptosis in airway epithelial cells to the
pathogenesis of asthma is unclear. Oxidative stress induced
by smoking can cause damage to the lung matrix and death
of structural cells, leading to emphysema. In COPD patients
increased apoptosis is present in the lungs, as well as decreased
clearance of apoptotic cells (111).

Role of miR-223 in Cell Proliferation and

Differentiation
The deficiency of miR-223 in a mouse model leads to
hyperproliferation of neutrophils and enhanced differentiation
of granulocyte-monocyte progenitor cells (112). MiR-223 targets
myocyte enhancer factor 2c (Mef2c), a transcription factor
that promotes proliferation of myeloid progenitors, indicating
that miR-223 inhibits proliferation of myeloid progenitor cells.
Depletion ofMef2c restores the hyperproliferation of neutrophils
and expansion of granulocyte-monocyte progenitor cells (17).
Interestingly,Mef2c is decreased in bronchial epithelial cells from
mild and severe asthma patients compared to healthy controls
(70), which could result from the elevated miR-223 levels in
bronchial epithelial cells of asthma patients. Cell proliferation can
also be controlled by insulin-like growth factor-1 receptor (IGF-
1R). In vivo and in vitro studies demonstrated that IGF-1R is
a validated target of miR-223 (17, 44–46). IGF-1 upon binding
with IGF-1R results in activation of signaling pathway PI3K/Akt
and mTOR that controls cell proliferation, growth, survival, and
apoptosis. In eosinophil progenitors from miR-223 KO mice
upregulated expression in IGF-1R has been found. This results
in a delay in differentiation and growth of eosinophil progenitors
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(113), suggesting that changes in miR-223 can also modulate
eosinophil function in asthma. Both in asthma and COPD
abnormal IGF-1 signaling has been demonstrated (57). Asthma
patients treated with ICS have reduced IGF-1 levels, which is
associated with reduced airway wall thickness and inflammation
(114). Furthermore, in vivo inhibition of Igf1r reduced airway
inflammation, airway resistance, airway wall thickening, and
eosinophil levels in blood and BALF in an OVA-induced mouse
model (115) and reduced neutrophil and macrophage numbers
in a bleomycin-induced mouse model (116). This indicates that
miR-223 contributes to airway wall remodeling in asthma. COPD
patients with acute exacerbation have decreased IGF-1 levels in
serum compared to stable COPD patients and healthy controls
(117), while in lung tissue mRNA levels of IGF-1 are increased in
COPD patients compared to controls (63). It would be of interest
to investigate if miR-223 levels are elevated upon ICS treatment
in asthma and COPD.

Role of miR-223 in Cell Viability, Invasion, and

Apoptosis
Besides cell proliferation and differentiation, several in vitro
studies in lung cancer cells have investigated the role of miR-
223 in cell viability and invasion and apoptosis. However,
contradicting results have been found about the function of
miR-223 in lung cancer cells, which is probably due to the
use of different cell types. Two studies demonstrated that miR-
223 promotes cell viability, invasion and reduces apoptosis in
adenocarcinoma A549 cells (118) and in SPC-A1 lung cancer
cells by targeting transforming growth factor β (TGF-β) receptor
3 (TGFBR3) (47). TGFBR3 is involved in TGF-β signaling,
which regulates cell growth, differentiation, and development
(47). Reduced expression of miR-223 was demonstrated in airway
smooth muscle cells stimulated with TGF-β1 (46), while recently
overexpression of miR-223 in DCs increased the levels of TGF-β
upon LPS stimulation, which were associated with higher levels of
IL-10 and more T regulatory cells (119). TGF-β and the receptors
play a key role in airway remodeling in asthma and COPD. TGF-
β signaling induces amongst others the expression of collagen
and can cause the disruption of airway epithelial integrity, which
contribute to epithelial-mesenchymal transition (120). In asthma
patients, the expression of TGF-β1 is increased in bronchial
biopsies and is associated with the severity of the disease (121).
Increased TGF-β1 levels were also found in serum of COPD
patients (122), however, in bronchial epithelial cells and alveolar
macrophages of COPD patients TGF-β1 levels were decreased
compared to control smokers (123).

Furthermore, in asthma and COPD patients several genetic
variations (SNPs) were found for TGFBR3 (124, 125). Decreased
levels of TGFBR3 were measured in lungs from severe COPD
patients with emphysema and in blood of asthma patients
compared to controls (71, 72), which might be caused by
increased levels of miR-223 in COPD and asthma patients.

Two other studies investigated the role of miR-223 in cell
death. Overexpression of miR-223 in human lung squamous cell
carcinoma cells inhibit migration and proliferation by targeting
p53 (48). Furthermore, the growth rate of Lewis lung carcinoma

cells is reduced uponmiR-223 overexpression by targeting cyclin-
dependent kinase 2 (CDK2). Similar to p53, CDK2 is involved
in cell cycle arrest (45). Furthermore, a SNP of CDK2 has been
associated with asthma (126). During homeostasis the expression
of p53 is low. However, oxidative stress, which can be caused by
smoking in airway epithelial cells (127), induces p53 expression
and activity, resulting in cell apoptosis. Despite the elevated levels
of miR-223 in COPD patients, the validated target p53 is still
higher expressed in lung tissue of COPD patients compared
to non-COPD controls, especially in smoking COPD patients
(73, 74). This suggests that miR-223 could be less sufficient in
reducing apoptosis by targeting p53 in COPD patients compared
to non-COPD controls.

Overall, miR-223 can target several genes that are involved
in cell proliferation, differentiation, viability, invasion, and death
by targeting Mef2c, IGF-1R, TGFBR3, CDK2, and p53, genes
that have been implicated in the pathogenesis of asthma and/or
COPD. However, the function of miR-223 is cell type and tissue
dependent. Since structural cells barely express miR-223, the
functional differences of miR-223 might be caused by the transfer
of miR-223 from myeloid cell to structural cells.

TRANSFER OF miR-223 TO RECIPIENT
CELLS

During the last decade, it has become clear that miRNAs can be
transferred to recipient cells by extracellular vesicles and high-
density lipoproteins, influencing biologic processes in recipient
cells (128). Extracellular vesicles contain proteins, lipids, and
DNA and RNA molecules, including miRNAs, which can be
important non-invasive biomarkers for asthma and COPD (129).
Recent studies have shown that inflammatory cells can transfer
miR-223 to lung epithelial cells via extracellular vesicles. During
homeostasis, the expression of miR-223 is low in alveolar and
bronchial epithelial cells, however during lung inflammation
miRNAs can transfer in extracellular vesicles derived from
polymorphonuclear neutrophils to alveolar epithelial cells,
increasing miR-223 levels in epithelial cells (35). A functional
study on miR-223 transfer in extracellular vesicles found that
miR-223 is still functional active after uptake in recipient
cells (130). Furthermore, dramatically increased extracellular
vesicle numbers were measured in BALF and serum of mice
treated with LPS or Klebsiella pneumoniae. These extracellular
vesicles are derived from lung macrophages (38). Liang et al.
found that activated platelets also release large amounts of
extracellular vesicles that contain high levels of miR-223 and
can transfer to human adenocarcinoma A549 cells (49). High-
density lipoproteins can also transfer miR-223 into endothelial
cells (50). A recent study showed that severe asthma patients
have less mature miRNA in extracellular vesicles-derived from
BALF and that the miRNA profiles are altered compared to
healthy controls, with 90 downregulated miRNA (including miR-
223) in asthma. Furthermore, increased expression levels of
predicted target genes of these 90 miRNAs were demonstrated,
including genes involved in inflammation and remodeling, such
as the TGF-β receptors (131). Extracellular vesicles derived
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from mild asthma patients appear to have a different miRNA
profile than those from severe asthma patients, since comparison
of miR-223 expression between extracellular vesicles derived
from mild asthma patients compared to healthy controls
showed no differences (132). Furthermore, BALF from allergen-
exposed mice contains higher miR-223 levels compared to
BALF from control mice (133). Moreover, cigarette smoke
exposure can change the composition of extracellular vesicles
derived fromHBECs (134). Moreover, COPD patients with acute
exacerbation release more extracellular vesicles compared to
non-smoking healthy controls (135). This indicates that upon
stress extracellular vesicles are altered and might contribute
to pro-inflammatory responses. Although miR-223 can be
transferred in extracellular vesicles or high-density lipoproteins
to recipient cells to control or alter biological functions,
further study is required to identify the therapeutic potential of
extracellular vesicles in asthma and COPD.

FUTURE EXPERIMENTS

Despite the fact that miR-223 is one of the best studied miRNAs
in literature, its functional role in pathogenesis of asthma and
COPD remains incompletely understood. One important topic
that needs to be addressed further is the identification of precise
targets of miR-223 in health and disease and to discriminate
in which cellular compartments these targets are altered in
disease. In this review we only focused on validated targets,
implicating that probably many other miR-223-controlled genes
that are relevant for asthma and/or COPD were not considered.
A second important area that requires future research is
the discrimination between different diseases phenotypes; e.g.,
eosinophilic, neutrophilic, paucigranulocytic asthma and the
involvement of different target such as PARP-1 and NLRP3 in the
determination of these phenotypes.

In addition to investigating the expression of miR-223 and
its targets in samples from well-characterized patient groups,
also the use of in vivo murine models can provide more
insight into the role of miR-223 in asthma and COPD. MiR-
223 deficient mice can be tested in different asthma and COPD
mouse models to better understand how miR-223 contributes to
asthma and COPD. Here, the classical models of sole allergen
expose or combined exposures with air pollution or microbial
triggers such as LPS could be applied, which could mimic a
predominant eosinophilic or a mixed neutrophilic/eosinophilic
phenotype in asthma (136, 137). For COPD, mouse models
with exposure to cigarette smoke, LPS or elastase can be used
(138, 139). These studies can help to investigate the role of
miR-223 in different asthma and COPD phenotypes when
using knockouts for miR-223. However, an important point
of consideration when using miR-223-deficient mice is the
involvement of miR-223 in hematopoietic cell development,
which can complicate evaluation of inflammatory processes. A
complementary approach is therefore the use of miR-223 mimics
or antagomirs to up- or downregulate miR-223 expression in
a specific tissues, such as the lung via inhalation. The use of
mimics and antagomirs can unravel the role of miR-223 in
the pathogenesis of asthma and COPD, but also in in other
diseases (140).

DIAGNOSTIC AND THERAPEUTIC
OPPORTUNITIES OF miR-223 IN
OBSTRUCTIVE RESPIRATORY DISEASES

Based on the findings of the studies described above, we suggest
that it requires further investigation to determine if miR-223
can be a new diagnostic and/or therapeutic opportunity. The
high and stable secretion of miR-223 in bodily fluids makes it
a potential biomarker in asthma and COPD. The findings for
miR-223 in sputum of neutrophilic asthma patients and the
correlation between miR-223 expression and lung function (22)
and bronchodilator response (29) suggest that miR-223 could be
a diagnostic tool to determine asthma severity. However, miR-
223 cannot be linked to a particular phenotype as higher levels
of miR-223 were found in bronchial airway epithelial cells from
atopic asthma patients with bronchial hyperresponsiveness as
well (28). Ideally such a biomarker should predict the disease
severity or phenotype in e.g., blood plasma or serum, since
sputum inductions are not part of standard clinical practice. It
therefore requires further investigation whether the correlations
between miR-223 expression, inflammatory phenotype and
disease severity are similar in other tissue compartments.

Overall, most of the in vitro studies have indicated an anti-
inflammatory role of miR-223. Therefore, despite of the increased
levels of miR-223 in asthma and COPD patients, we suggest
that overexpressing miR-223 (e.g., by a miRNA mimic), rather
than inhibiting miR-223, could be a therapeutic approach in
asthma and COPD. Recent studies in cancer showed that there
are multiple options to deliver the miRNA of interest, e.g., DNA
plasmids, lipid vesicles, nanoparticles, or viral vectors (141).
In the context of asthma and COPD, overexpression miR-223
in bronchial epithelial cells can be an option. However, main
challenges of miRNA therapy are accuracy and efficiency of
delivery. Since the miRNAs need to reach the right target cells,
their uptake must be efficient and the correct genes must be
targeted, without eliciting unwanted innate immune responses
(142). Therefore, many hurdles have to be taken to consider
miR-223 as a therapeutic option for asthma and COPD.

CONCLUSIONS

In this review, we summarized current knowledge on miR-223
and how this miRNA could be involved in the development and
pathogenesis of chronic obstructive airway diseases. In asthma
patients, higher miR-223 expression levels in bronchial airway
epithelial cells and in induced sputum have been observed,
while COPD patients have higher miR-223 expression levels in
lung tissue compared to healthy controls. In vivo and in vitro
experiments showed that miR-223 is involved in pathways
associated with cell proliferation, differentiation, and death and
remodeling, however, the exact role is still unclear. Furthermore,
miR-223 affects neutrophil function. Higher levels of miR-223
protect mice from lung inflammation, probably by reducing the
activity of the NF-κB pathway. Therefore, most data point to
an anti-inflammatory role of miR-223, and thus suggest that
increased miR-223 levels in the airways try to counteract the
ongoing inflammation. It might be that in vivo miR-223 is not
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sufficient to reduce the strong inflammatory responses in asthma
and COPD or that epithelial cells from asthma and COPD
patients are less able to take up miR-223. In conclusion, miR-
223 is a fascinating miRNA and additional studies are required to
unravel its exact role in the pathogenesis of asthma and COPD.
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