169 research outputs found
Simulation of Cu-Mg metallic glass: Thermodynamics and Structure
We have obtained effective medium theory (EMT) interatomic potential
parameters suitable for studying Cu-Mg metallic glasses. We present
thermodynamic and structural results from simulations of such glasses over a
range of compositions. We have produced low-temperature configurations by
cooling from the melt at as slow a rate as practical, using constant
temperature and pressure molecular dynamics. During the cooling process we have
carried out thermodynamic analyses based on the temperature dependence of the
enthalpy and its derivative, the specific heat, from which the glass transition
temperature may be determined. We have also carried out structural analyses
using the radial distribution function (RDF) and common neighbor analysis
(CNA). Our analysis suggests that the splitting of the second peak, commonly
associated with metallic glasses, in fact has little to do with the glass
transition itself, but is simply a consequence of the narrowing of peaks
associated with structural features present in the liquid state. In fact the
splitting temperature for the Cu-Cu RDF is well above . The CNA also
highlights a strong similarity between the structure of the intermetallic
alloys and the amorphous alloys of similar composition. We have also
investigated the diffusivity in the supercooled regime. Its temperature
dependence indicates fragile-liquid behavior, typical of binary metallic
glasses. On the other hand, the relatively low specific heat jump of around
indicates apparent strong-liquid behavior, but this can
be explained by the width of the transition due to the high cooling rates.Comment: 12 pages (revtex, two-column), 12 figures, submitted to Phys. Rev.
High glass forming ability correlated with microstructure and hydrogen storage properties of a Mg-Cu-Ag-Y glass
Thermal characterization of an as-cast Mg54Cu28Ag7Y11 bulk metallic glass revealed that this
alloy exhibits excellent glass forming ability. High-resolution X-ray diffraction study and
transmission electron microscopy show that heating and isothermal annealing treatment
results in the nucleation of nanocrystals of several phases. The average size of these
nanocrystals (~15-20 nm) only slightly varies with prolonged annealing, only their volume
fraction increases. High-pressure calorimetry experiments indicate that the as-cast fully
amorphous alloy exhibits the largest enthalpy of hydrogen desorption, compared to partially and fully crystallized states. Since the fully crystallized alloy does not desorb hydrogen, it is
assumed that hydrogen storage capacity correlates only with the crystalline volume fraction of
the partially crystallized Mg54Cu28Ag7Y11 BMG and additional parameters (crystalline phase
selection, crystallite size, average matrix concentration) do not play a significant role
Storing hydrogen in the form of light alloy hydrides
Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density
Size scale dependence of compressive instabilities in layered composites in the presence of stress gradients
On the structure of defects in the Fe7Mo6 -Phase
Topologically close packed phases, among them the -phase studied here,
are commonly considered as being hard and brittle due to their close packed and
complex structure. Nanoindentation enables plastic deformation and therefore
investigation of the structure of mobile defects in the -phase, which, in
contrast to grown-in defects, has not been examined yet. High resolution
transmission electron microscopy (HR-TEM) performed on samples deformed by
nanoindentation revealed stacking faults which are likely induced by plastic
deformation. These defects were compared to theoretically possible stacking
faults within the -phase building blocks, and in particular Laves phase
layers. The experimentally observed stacking faults were found resulting from
synchroshear assumed to be associated with deformation in the Laves-phase
building blocks
- …
