75,231 research outputs found

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Continuous Performance Benchmarking Framework for ROOT

    Get PDF
    Foundational software libraries such as ROOT are under intense pressure to avoid software regression, including performance regressions. Continuous performance benchmarking, as a part of continuous integration and other code quality testing, is an industry best-practice to understand how the performance of a software product evolves over time. We present a framework, built from industry best practices and tools, to help to understand ROOT code performance and monitor the efficiency of the code for a several processor architectures. It additionally allows historical performance measurements for ROOT I/O, vectorization and parallelization sub-systems.Comment: 8 pages, 5 figures, CHEP 2018 - 23rd International Conference on Computing in High Energy and Nuclear Physic

    Software development: A paradigm for the future

    Get PDF
    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented
    corecore