371 research outputs found

    Convexities related to path properties on graphs; a unified approach

    Get PDF
    Path properties, such as 'geodesic', 'induced', 'all paths' define a convexity on a connected graph. The general notion of path property, introduced in this paper, gives rise to a comprehensive survey of results obtained by different authors for a variety of path properties, together with a number of new results. We pay special attention to convexities defined by path properties on graph products and the classical convexity invariants, such as the Caratheodory, Helly and Radon numbers in relation with graph invariants, such as clique numbers and other graph properties.

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≥3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively

    Clique graphs and Helly graphs

    Get PDF
    AbstractAmong the graphs for which the system of cliques has the Helly property those are characterized which are clique-convergent to the one-vertex graph. These graphs, also known as the so-called absolute retracts of reflexive graphs, are the line graphs of conformal Helly hypergraphs possessing a certain elimination scheme. From particular classes of such hypergraphs one can readily construct various classes G of graphs such that each member of G has its clique graph in G and is itself the clique graph of some other member of G. Examples include the classes of strongly chordal graphs and Ptolemaic graphs, respectively

    Group actions on injective spaces and Helly graphs

    Full text link
    These are lecture notes for a minicourse on group actions on injective spaces and Helly graphs, given at the CRM Montreal in June 2023. We review the basics of injective metric spaces and Helly graphs, emphasizing the parallel between the two theories. We also describe various elementary properties of groups actions on such spaces. We present several constructions of injective metric spaces and Helly graphs with interesting actions of many groups of geometric nature. We also list a few exercises and open questions at the end.Comment: Comments are welcome! v2: some references adde
    • …
    corecore