2 research outputs found

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    Optimality conditions, approximate stationarity, and applications 'a story beyond lipschitzness

    Get PDF
    Approximate necessary optimality conditions in terms of Frechet subgradients and normals for a rather general optimization problem with a potentially non-Lipschitzian objective function are established with the aid of Ekeland's variational principle, the fuzzy Frechet subdifferential sum rule, and a novel notion of lower semicontinuity relative to a set-valued mapping or set. Feasible points satisfying these optimality conditions are referred to as approximately stationary. As applications, we derive a new general version of the extremal principle. Furthermore, we study approximate stationarity conditions for an optimization problem with a composite objective function and geometric constraints, a qualification condition guaranteeing that approximately stationary points of such a problem are M-stationary, and a multiplier-penalty-method which naturally computes approximately stationary points of the underlying problem. Finally, necessary optimality conditions for an optimal control problem with a non-Lipschitzian sparsity-promoting term in the objective function are established. © The authors
    corecore