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OPTIMALITY CONDITIONS, APPROXIMATE STATIONARITY,

AND APPLICATIONS – A STORY BEYOND LIPSCHITZNESS

Alexander Y. Kruger1,2 and Patrick Mehlitz3,4,*

Abstract. Approximate necessary optimality conditions in terms of Fréchet subgradients and normals
for a rather general optimization problem with a potentially non-Lipschitzian objective function are
established with the aid of Ekeland’s variational principle, the fuzzy Fréchet subdifferential sum rule,
and a novel notion of lower semicontinuity relative to a set-valued mapping or set. Feasible points
satisfying these optimality conditions are referred to as approximately stationary. As applications, we
derive a new general version of the extremal principle. Furthermore, we study approximate stationarity
conditions for an optimization problem with a composite objective function and geometric constraints,
a qualification condition guaranteeing that approximately stationary points of such a problem are M-
stationary, and a multiplier-penalty-method which naturally computes approximately stationary points
of the underlying problem. Finally, necessary optimality conditions for an optimal control problem with
a non-Lipschitzian sparsity-promoting term in the objective function are established.
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1. Introduction

Approximate stationarity conditions, claiming that, along a convergent sequence, a classical stationarity con-
dition (like a multiplier rule) holds up to a tolerance which tends to zero, have proved to be a powerful tool
in mathematical optimization throughout the last decades. The particular interest in such conditions is based
on two prominent features. First, they often serve as necessary optimality conditions even in the absence of
constraint qualifications. Second, different classes of solution algorithms for the computational treatment of
optimization problems naturally produce sequences whose accumulation points are approximately stationary.
Approximate stationarity conditions can be traced back to the early 1980s, see [40, 44], where they popped up as
a consequence of the famous extremal principle. The latter geometric result, when formulated in infinite dimen-
sions in terms of Fréchet normals, can itself be interpreted as a kind of approximate stationarity, see [41, 44, 51].
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2 A.Y. KRUGER AND P. MEHLITZ

In [2, 6], this fundamental concept, which is referred to as Approximate Karush–Kuhn–Tucker (AKKT) station-
arity in these papers, has been rediscovered due to its significant relevance in the context of numerical standard
nonlinear programming. A notable feature of AKKT-stationary points is the potential unboundedness of the
associated sequence of Lagrange multipliers. The latter already depicts that AKKT-stationary points do not
need to satisfy the classical KKT conditions. This observation gave rise to the investigation of conditions ensur-
ing that AKKT-stationary points actually are KKT points, see e.g. [5]. The resulting constraint qualifications
for the underlying nonlinear optimization problem turned out to be comparatively weak. During the last decade,
reasonable notions of approximate stationarity have been introduced for more challenging classes of optimization
problems like programs with complementarity, see [3, 55], cardinality, see [36], conic, see [4], nonsmooth, see
[31, 47, 48], and geometric constraints, see [35], in the finite-dimensional situation. A generalization to optimiza-
tion problems in abstract Banach spaces can be found in [11]. In all these papers, the underlying optimization
problem’s objective function is assumed to be locally Lipschitzian. Note that the (local) Lipschitz property of
the (all but one) functions involved is a key assumption in most conventional subdifferential calculus results in
infinite dimensions in convex and nonconvex settings, see e.g. the sum rules in Lemma 2.2. However, as several
prominent applications like sparse portfolio selection, compressed sensing, edge-preserving image restoration,
low-rank matrix completion, or signal processing, where the objective function is often only lower semicontinu-
ous, demonstrate, Lipschitz continuity might be a restrictive property of the data. The purpose of this paper is
to provide a reasonable extension of approximate stationarity to a rather general class of optimization problems
in Banach spaces with a lower semicontinuous objective function and generalized equation constraints generated
by a set-valued mapping in order to open the topic up to the aforementioned challenging applications.

Our general approach to a notion of approximate stationarity, which serves as a necessary optimality con-
dition, is based on two major classical tools: Ekeland’s variational principle, see [22], and the fuzzy calculus of
Fréchet normals, see [33, 41]. Another convenient ingredient of the theory is a new notion of lower semicon-
tinuity of extended-real-valued functions relative to a given set-valued mapping which holds for free in finite
dimensions. We illustrate our findings in the context of generalized set separation and derive a novel extremal
principle which differs from the traditional one which dates back to [44]. On the one hand, its prerequisites
regarding the position of the involved sets relative to each other is slightly more restrictive than in [44] when
the classical notion of extremality, meaning that the sets of interest can be “pushed apart from each other”, is
used. On the other hand, our new extremal principle covers settings where extremality is based on functions
which are just lower semicontinuous, and, thus, applies in more general situations. The final part of the paper
is dedicated to the study of optimization problems with so-called geometric constraints, where the feasible set
equals the preimage of a closed set under a smooth transformation, whose objective function is the sum of a
smooth part and a merely lower semicontinuous part. First, we apply our concept of approximate stationarity to
this problem class in order to obtain necessary optimality conditions. Furthermore, we introduce an associated
qualification condition which guarantees M-stationarity of approximately stationary points. As we will show,
this generalizes related considerations from [15, 28] which were done in a completely finite-dimensional setting.
Second, we suggest an augmented Lagrangian method for the numerical solution of geometrically constrained
programs and show that it computes approximately stationary points in our new sense. Finally, we use our
theory in order to state necessary optimality conditions for optimal control problems with a non-Lipschitzian
so-called sparsity-promoting term in the objective function, see [34, 59], which enforces optimal controls to be
zero on large parts of the domain.

The remaining parts of the paper are organized as follows. In Section 2, we comment on the notation which
is used in this manuscript and recall some fundamentals from variational analysis. Section 3 is dedicated to
the study of a new notion of lower semicontinuity of an extended-real-valued function relative to a given set-
valued mapping or set. We derive necessary optimality conditions of approximate stationarity type for rather
general optimization problems in Section 4. This is used in Section 5 in order to derive a novel extremal
principle in generalized set separation. Furthermore, we apply our findings from Sections 4 in 6 in order to state
necessary optimality conditions of approximate stationarity type for optimization problems in Banach spaces
with geometric constraints and a composite objective function. Based on that, we derive a new qualification
condition ensuring M-stationarity of local minimizers, see Section 6.1, an augmented Lagrangian method which
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naturally computes approximately stationary points, see Section 6.2, and necessary optimality conditions for
optimal control problems with a sparsity-promoting term in the objective function, see Section 6.3. Some
concluding remarks close the paper in Section 7.

2. Notation and preliminaries

2.1. Basic notation

Our basic notation is standard, see e.g. [33, 51, 57]. The symbols R and N denote the sets of all real numbers
and all positive integers, respectively. Throughout the paper, X and Y are either metric or Banach spaces
(although many facts, particularly, most of the definitions in Section 2.2, are valid in arbitrary normed vector
spaces, i.e., do not require the spaces to be complete). For brevity, we use the same notations d(·, ·) and ‖ · ‖ for
distances and norms in all spaces. Banach spaces are often treated as metric spaces with the distance determined
by the norm in the usual way. The distance from a point x ∈ X to a set Ω ⊂ X in a metric space X is defined
by distΩ(x) := infu∈Ω d(x, u), and we use the convention dist∅(x) := +∞. Throughout the paper, Ω and int Ω
denote the closure and the interior of Ω, respectively. In case where X is a Hilbert space and K ⊂ X is a closed,
convex set, we denote by PK : X → X the projection map associated with K.

If X is a Banach space, its topological dual is denoted by X∗, while 〈·, ·〉 : X∗ ×X → R denotes the bilinear
form defining the pairing between the two spaces. If not explicitly stated otherwise, products of (primal) metric
or Banach spaces are equipped with the maximum distances or norms, e.g., ‖(x, y)‖ := max(‖x‖, ‖y‖) for all
(x, y) ∈ X × Y . Note that the corresponding dual norm is the sum norm given by ‖(x∗, y∗)‖ := ‖x∗‖+ ‖y∗‖ for
all (x∗, y∗) ∈ X∗×Y ∗. The open unit balls in the primal and dual spaces are denoted by B and B∗, respectively,
while the corresponding closed unit balls are denoted by B and B∗, respectively. The notations Bδ(x) and Bδ(x)
stand, respectively, for the open and closed balls with center x and radius δ > 0 in X. Whenever {xk}k∈N ⊂ X
is a sequence and x̄ ∈ X is some point, we exploit xk → x̄ (xk ⇀ x̄) in order to denote the strong (weak)

convergence of {xk}k∈N to x̄. Similarly, we use x∗k
∗
⇀ x∗ in order to express that a sequence {x∗k}k∈N ⊂ X∗

converges weakly∗ to x∗ ∈ X∗. Finally, xk →Ω x̄ means that {xk}k∈N ⊂ Ω converges strongly to x̄ for a given
set Ω ⊂ X.

For an extended-real-valued function ϕ : X → R∞ := R ∪ {+∞}, its domain and epigraph are defined by
domϕ := {x ∈ X |ϕ(x) < +∞} and epiϕ := {(x, µ) ∈ X × R |ϕ(x) ≤ µ}, respectively. For each set Ω ⊂ X, we
set ϕΩ := ϕ+ iΩ where iΩ : X → R∞ is the so-called indicator function of Ω which equals zero on Ω and is set
to +∞ on X \ Ω.

A set-valued mapping Υ: X ⇒ Y between metric spaces X and Y is a mapping, which assigns to every
x ∈ X a (possibly empty) set Υ(x) ⊂ Y . We use the notations gph Υ := {(x, y) ∈ X × Y | y ∈ Υ(x)}, Im Υ :=⋃
x∈X Υ(x), and dom Υ := {x ∈ X |Υ(x) 6= ∅} for the graph, the image, and the domain of Υ, respectively.

Furthermore, Υ−1 : Y ⇒ X given by Υ−1(y) := {x ∈ X | y ∈ Υ(x)} for all y ∈ Y is referred to as the inverse of
Υ. Assuming that x̄ ∈ dom Υ is fixed,

lim sup
x→x̄

Υ(x) := {y ∈ Y | ∃{(xk, yk)}k∈N ⊂ gph Υ: xk → x̄, yk → y}

is referred to as the (strong) outer limit of Υ at x̄. Finally, if X is a Banach space, for a set-valued mapping
Ξ: X ⇒ X∗ and x̄ ∈ dom Ξ, we use

w∗− lim sup
x→x̄

Ξ(x) :=
{
x∗ ∈ X∗

∣∣∣ ∃{(xk, x∗k)}k∈N ⊂ gph Ξ: xk → x̄, x∗k
∗
⇀ x∗

}
in order to denote the outer limit of Ξ at x̄ when equipping X∗ with the weak∗ topology. Let us note that both
outer limits from above are limits in the sense of Painlevé–Kuratowski.

Recall that a Banach space is a so-called Asplund space if every continuous, convex function on an open
convex set is Fréchet differentiable on a dense subset, or equivalently, if the dual of each separable subspace is
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separable as well. We refer the reader to [51, 54] for discussions about and characterizations of Asplund spaces.
We would like to note that all reflexive, particularly, all finite-dimensional Banach spaces possess the Asplund
property.

2.2. Variational analysis

The subsequently introduced notions of variational analysis and generalized differentiation are standard, see
e.g. [41, 51].

Given a subset Ω of a Banach space X, a point x̄ ∈ Ω, and a number ε ≥ 0, the nonempty, closed, convex set

NΩ,ε(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
x→Ωx̄, x 6=x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ ε

}
(2.1)

is the set of ε-normals to Ω at x̄. In case ε = 0, it is a closed, convex cone called Fréchet normal cone to Ω at
x̄. In this case, we drop the subscript ε in the above notation and simply write

NΩ(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
x→Ωx̄, x 6=x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0

}
.

Based on (2.1), one can define the more robust limiting normal cone to Ω at x̄ by means of a limiting procedure:

NΩ(x̄) := w∗− lim sup
x→Ωx̄, ε↓0

NΩ,ε(x).

Whenever X is an Asplund space, the above definition admits the following simplification:

NΩ(x̄) = w∗− lim sup
x→Ωx̄

NΩ(x).

If Ω is a convex set, the Fréchet and limiting normal cones reduce to the normal cone in the sense of convex
analysis, i.e.,

NΩ(x̄) = NΩ(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0 ∀x ∈ Ω} .

For a lower semicontinuous function ϕ : X → R∞, defined on a Banach space X, its Fréchet subdifferential
at x̄ ∈ domϕ is defined as

∂ϕ(x̄) : =

{
x∗ ∈ X∗

∣∣∣∣ lim inf
x→x̄, x 6=x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0

}
= {x∗ ∈ X∗ | (x∗,−1) ∈ Nepiϕ(x̄, ϕ(x̄))} .

The limiting and singular limiting subdifferential of ϕ at x̄ are defined, respectively, by means of

∂ϕ(x̄) :=
{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N epiϕ(x̄, ϕ(x̄))
}
,

∂
∞
ϕ(x̄) :=

{
x∗ ∈ X∗

∣∣ (x∗, 0) ∈ N epiϕ(x̄, ϕ(x̄))
}
.

Note that in case where X is an Asplund space, we have

∂ϕ(x̄) = w∗− lim sup
x→x̄, ϕ(x)→ϕ(x̄)

∂ϕ(x),
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∂
∞
ϕ(x̄) = w∗− lim sup

x→x̄, ϕ(x)→ϕ(x̄), t↓0
t ∂ϕ(x),

see Theorems 2.34 and 2.38 of [51]. If ϕ is convex, the Fréchet and limiting subdifferential reduce to the
subdifferential in the sense of convex analysis, i.e.,

∂ϕ(x̄) = ∂ϕ(x̄) = {x∗ ∈ X∗ |ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉 ≥ 0 ∀x ∈ X} .

By convention, we set NΩ(x) = NΩ(x) := ∅ if x /∈ Ω and ∂ϕ(x) = ∂ϕ(x) = ∂
∞
ϕ(x) := ∅ if x /∈ domϕ. It is

easy to check that NΩ(x̄) = ∂iΩ(x̄) and NΩ(x̄) = ∂iΩ(x̄).
For a set-valued mapping Υ: X ⇒ Y between Banach spaces, its Fréchet coderivative at (x̄, ȳ) ∈ gph Υ is

defined as

∀y∗ ∈ Y ∗ : D∗Υ(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ Ngph Υ(x̄, ȳ)} .

The proof of our main result Theorem 4.1 relies on certain fundamental results of variational analysis:
Ekeland’s variational principle, see e.g. Section 3.3 of [7] or [22], and two types of subdifferential sum rules
which address the subdifferential in the sense of convex analysis, see e.g. Theorem 3.16 of [54], and the Fréchet
subdifferential, see e.g. Theorem 3 of [23]. Below, we provide these results for completeness.

Lemma 2.1. Let X be a complete metric space, ϕ : X → R∞ be lower semicontinuous and bounded from below,
x̄ ∈ domϕ, and ε > 0. Then there exists a point x̂ ∈ X which satisfies the following conditions:

(a) ϕ(x̂) ≤ ϕ(x̄);
(b) ∀x ∈ X : ϕ(x) + εd(x, x̂) ≥ ϕ(x̂).

Lemma 2.2. Let X be a Banach space, ϕ1, ϕ2 : X → R∞, and x̄ ∈ domϕ1 ∩ domϕ2. Then the following
assertions hold.

(a) Convex sum rule. Let ϕ1 and ϕ2 be convex, and ϕ1 be continuous at a point in domϕ2. Then
∂(ϕ1 + ϕ2)(x̄) = ∂ϕ1(x̄) + ∂ϕ2(x̄).

(b) Fuzzy sum rule. Let X be Asplund, ϕ1 be Lipschitz continuous around x̄, and ϕ2 be lower semicontin-
uous in a neighborhood of x̄. Then, for each x∗ ∈ ∂(ϕ1 + ϕ2)(x̄) and ε > 0, there exist x1, x2 ∈ X with
‖xi − x̄‖ < ε and |ϕi(xi)− ϕi(x̄)| < ε, i = 1, 2, such that x∗ ∈ ∂ϕ1(x1) + ∂ϕ2(x2) + εB∗.

We will need representations of the subdifferentials of the distance function collected in the next lemma.
These results are taken from Proposition 1.30 of [41], Theorem 4.40 of [33], and Section 3.5.2, Exercise 6 of [53].

Lemma 2.3. Let X be a Banach space, Ω ⊂ X be nonempty and closed, and x̄ ∈ X. Then the following
assertions hold.

(a) If x̄ ∈ Ω, then ∂ distΩ(x̄) = NΩ(x̄) ∩ B∗.
(b) If x̄ /∈ Ω and either X is Asplund or Ω is convex, then, for each x∗ ∈ ∂ distΩ(x̄) and each ε > 0, there

exist x ∈ Ω and u∗ ∈ NΩ(x) such that ‖x− x̄‖ < distΩ(x̄) + ε and ‖x∗ − u∗‖ < ε.

Let us briefly mention that assertion (b) of Lemma 2.3 can obviously be improved when the set of projections
of x̄ onto Ω is nonempty, see Proposition 1.102 of [51]. This is always the case if Ω is a nonempty, closed, convex
subset of a reflexive Banach space, since in this case Ω is weakly sequentially compact while the norm is weakly
sequentially lower semicontinuous.

The conditions in the final definition of this subsection are standard, see e.g. [39, 42].

Definition 2.4. Let X be a metric space, ϕ : X → R∞, and x̄ ∈ domϕ.

(a) We call x̄ a stationary point of ϕ if lim infx→x̄, x 6=x̄
ϕ(x)−ϕ(x̄)
d(x,x̄) ≥ 0.
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(b) Let ε > 0 and U ⊂ X with x̄ ∈ U . We call x̄ an ε-minimal point of ϕ on U if infx∈U ϕ(x) > ϕ(x̄)− ε. If
U = X, x̄ is called a globally ε-minimal point of ϕ.

In the subsequent remark, we interrelate the concepts from Definition 2.4.

Remark 2.5. For a metric space X, ϕ : X → R∞, and x̄ ∈ domϕ, the following assertions hold.

(a) If x̄ is a local minimizer of ϕ, then it is a stationary point of ϕ.
(b) If x̄ is a stationary point of ϕ, then, for each ε > 0 and each sufficiently small δ > 0, x̄ is an εδ-minimal

point of ϕ on Bδ(x̄).
(c) If X is a normed space, then x̄ is a stationary point of ϕ if and only if 0 ∈ ∂ϕ(x̄).

3. Novel notions of semicontinuity

In this paper, we exploit new notions of lower semicontinuity of extended-real-valued functions relative to a
given set-valued mapping or set. Here, we first introduce the concepts of interest before studying their properties
and presenting sufficient conditions for their validity.

3.1. Lower semicontinuity of a function relative to a set-valued mapping or set

Let us start with the definition of the property of our interest.

Definition 3.1. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, and ȳ ∈ Y .

(a) Let a subset U ⊂ X be such that U ∩Φ−1(ȳ) ∩ domϕ 6= ∅. The function ϕ is lower semicontinuous on U
relative to Φ at ȳ if

inf
u∈Φ−1(ȳ)∩U

ϕ(u) ≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x). (3.1)

(b) Let x̄ ∈ Φ−1(ȳ) ∩ domϕ. The function ϕ is lower semicontinuous near x̄ relative to Φ at ȳ if there is a
δ0 > 0 such that, for each δ ∈ (0, δ0), ϕ is lower semicontinuous on Bδ(x̄) relative to Φ at ȳ.

Inequality (3.1) can be strict, see Example 3.4 below. Note that whenever (3.1) holds with a subset U ⊂ X,
it also holds with U in place of U . The converse implication is not true in general, see Example 3.5 below.
Particularly, a function which is lower semicontinuous on a set U relative to Φ at ȳ may fail to have this
property on a smaller set. This shortcoming explains the idea behind Definition 3.1(b). Furthermore, we have
the following result.

Lemma 3.2. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, (x̄, ȳ) ∈ gph Φ, and a subset U ⊂ X with
x̄ ∈ U ∩ domϕ. Assume that x̄ is a minimizer of ϕ on U . If ϕ is lower semicontinuous on U relative to Φ at ȳ,
then it is lower semicontinuous on Û relative to Φ at ȳ for each subset Û satisfying x̄ ∈ Û ⊂ U .

Proof. For each subset Û satisfying x̄ ∈ Û ⊂ U , we find

inf
u∈Φ−1(ȳ)∩Û

ϕ(u) = ϕ(x̄) = inf
u∈Φ−1(ȳ)∩U

ϕ(u) ≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) ≤ inf
U ′+ρB⊂Û,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x),

which shows the claim.

The properties in the next definition are particular cases of the ones in Definition 3.1, corresponding to the
set-valued mapping Φ: X ⇒ Y whose graph is given by gph Φ := Ω× Y , where Ω ⊂ X is a fixed set and Y can
be an arbitrary metric space, e.g., one can take Y := R. Observe that in this case, Φ−1(y) = Ω is valid for all
y ∈ Y .
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Definition 3.3. Fix a metric space X, ϕ : X → R∞, and Ω ⊂ X.

(a) Let a subset U ⊂ X be such that U ∩ Ω ∩ domϕ 6= ∅. The function ϕ is lower semicontinuous on U
relative to Ω if

inf
u∈Ω∩U

ϕ(u) ≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′,

distΩ(x)→0

ϕ(x). (3.2)

(b) Let x̄ ∈ Ω ∩ domϕ. The function ϕ is lower semicontinuous near x̄ relative to Ω if there is a δ0 > 0 such
that, for each δ ∈ (0, δ0), ϕ is lower semicontinuous on Bδ(x̄) relative to Ω.

The subsequent example shows that (3.2) can be strict.

Example 3.4. Consider the lower semicontinuous function ϕ : R→ R given by ϕ(x) := 0 if x ≤ 0 and ϕ(x) := 1
if x > 0, and the sets Ω = U := [0, 1] ⊂ R. Then infu∈Ω∩U ϕ(u) = 0, while if a subset U ′ satisfies U ′ + ρB ⊂ U
for some ρ > 0, then U ′ ⊂ (0, 1), and consequently ϕ(x) = 1 for all x ∈ U ′. Hence, the right-hand side of (3.2)
equals 1.

A function which is lower semicontinuous on a set U relative to Ω may fail to have this property on a smaller
set.

Example 3.5. Consider the function ϕ : R→ R given by ϕ(x) := 0 if x ≤ 0, and ϕ(x) := −1 if x > 0, the set
Ω := {0, 1} ⊂ R, and the point x̄ := 0. Consider the closed interval U1 := [−1, 1]. We find infu∈Ω∩U1

ϕ(u) =
−1 which is the global minimal value of ϕ on R. Hence, ϕ is lower semicontinuous on U1 relative to Ω by
Definition 3.3. For U2 := (−1, 1), we find infu∈Ω∩U2

ϕ(u) = 0. Moreover, choosing U ′ := (−1/2, 1/2) and xk :=
1/(k + 2) for each k ∈ N, we find U ′ + 1

2B ⊂ U2, {xk}k∈N ⊂ U ′, d(xk, x̄) → 0, and ϕ(xk) → −1, i.e., ϕ is not
lower semicontinuous on U2 relative to Ω by definition. Note that x̄ is a local minimizer of ϕ on Ω but not on
U1 or U2.

In the next two statements, we present sequential characterizations of the properties from Definitions 3.1(a)
and 3.3(a).

Proposition 3.6. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, ȳ ∈ Y , and a subset U ⊂ X with
U ∩ Φ−1(ȳ) ∩ domϕ6= ∅. Then ϕ is lower semicontinuous on U relative to Φ at ȳ if and only if

inf
u∈Φ−1(ȳ)∩U

ϕ(u) ≤ lim inf
k→+∞

ϕ(xk)

for all sequences {(xk, yk)}k∈N ⊂ X × Y satisfying yk → ȳ, distgph Φ(xk, yk) → 0, and {xk}k∈N + ρB ⊂ U for
some ρ > 0.

Proof. We need to show that the right-hand side of (3.1) equals the infimum over all numbers lim infk→+∞ ϕ(xk)
where the sequence {(xk, yk)}k∈N ⊂ X×Y needs to satisfy yk → ȳ, distgph Φ(xk, yk)→ 0, and {xk}k∈N +ρB ⊂ U
for some ρ > 0. Let {(xk, yk)}k∈N be such a sequence. Then

inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) ≤ lim inf
x∈{xk}k∈N, y→ȳ,
distgph Φ(x,y)→0

ϕ(x) ≤ lim inf
k→+∞

ϕ(xk).

Conversely, let the right-hand side of (3.1) be finite, and choose ε > 0 arbitrarily. Then there exist a subset

Û ⊂ U and a number ρ̂ > 0 such that Û + ρ̂B ⊂ U and

lim inf
k→+∞

inf
x∈Û, d(y,ȳ)< 1

k ,

distgph Φ(x,y)< 1
k

ϕ(x) = lim inf
x∈Û, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) < inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) + ε.
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For each k ∈ N such that infx∈Û, d(y,ȳ)< 1
k , distgph Φ(x,y)< 1

k
ϕ(x) is finite, there is a tuple (xk, yk) ∈ X × Y such

that xk ∈ Û , d(yk, ȳ) < 1/k, distgph Φ(xk, yk) < 1/k, and

ϕ(xk) < inf
x∈Û, d(y,ȳ)< 1

k ,

distgph Φ(x,y)< 1
k

ϕ(x) +
1

k
.

Considering the tail of the sequences, if necessary, we have {xk}k∈N + ρ̂B ⊂ U , yk → ȳ, distgph Φ(xk, yk) → 0,
and

lim inf
k→+∞

ϕ(xk) < inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) + ε.

As the number ε has been chosen arbitrarily, this proves the converse part in the present setting. If the right-
hand side of (3.1) equals −∞, then for each M > 0, we find a subset Û ⊂ U and a number ρ̂ > 0 such that

Û + ρ̂B ⊂ U and

lim inf
x∈Û, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) < −M.

Hence, there is a sequence {(xk, yk)}k∈N ⊂ X×Y such that {xk}k∈N + ρ̂B ⊂ U , yk → ȳ, and distgph Φ(xk, yk)→ 0
as k → +∞ while lim infk→+∞ ϕ(xk) < −M . Taking the infimum over all M > 0 now completes the proof of
the assertion.

Corollary 3.7. Let X be a metric space, ϕ : X → R∞, and Ω, U ⊂ X be sets with Ω ∩ U ∩ domϕ 6= ∅. Then
ϕ is lower semicontinuous on U relative to Ω if and only if

inf
u∈Ω∩U

ϕ(u) ≤ lim inf
k→+∞

ϕ(xk) (3.3)

for all sequences {xk}k∈N ⊂ X satisfying distΩ(xk)→ 0 and {xk}k∈N + ρB ⊂ U for some ρ > 0.

3.2. Sufficient conditions for lower semicontinuity of a function relative to a set-valued
mapping

As we will demonstrate below, the property from Definition 3.1(a) is valid whenever the involved function
ϕ and the set-valued mapping Φ enjoy certain semicontinuity properties, i.e., it can be decomposed into two
independent properties regarding the two main data objects. This will be beneficial in order to identify scenarios
where the new concept applies.

The upper semicontinuity properties of a set-valued mapping that we state in the following two definitions
seem to fit well for this purpose (in combination with the corresponding lower semicontinuity properties of a
function).

Definition 3.8. Fix metric spacesX and Y , S : Y ⇒ X, and ȳ ∈ domS. The mapping S is upper semicontinuous
at ȳ if

lim
x∈S(y), y→ȳ

distS(ȳ)(x) = 0.

Definition 3.9. Fix a Banach space X, a metric space Y , S : Y ⇒ X, and ȳ ∈ domS. The mapping S is partially
weakly sequentially upper semicontinuous at ȳ if x ∈ S(ȳ) holds for each sequence {(yk, xk)}k∈N ⊂ gphS which
satisfies yk → ȳ and xk ⇀ x.
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For a discussion of the property in Definition 3.8, we refer the reader to page 10 in [39]. The property in
Definition 3.9 can be interpreted as the usual sequential upper semicontinuity if X is equipped with the weak
topology. In case where Y is a Banach space, this property is inherent whenever the graph of the underlying
set-valued mapping is weakly sequentially closed which is naturally given whenever the latter is convex and
closed. Obviously, each closed-graph set-valued mapping with a finite-dimensional image space is partially
weakly sequentially upper semicontinuous.

Proposition 3.10. Fix metric spaces X and Y , Φ: X ⇒ Y , and ϕ : X → R∞. Let ȳ ∈ Y and a subset U ⊂ X
with U ∩ Φ−1(ȳ) ∩ domϕ 6= ∅ be arbitrarily chosen. Define S : Y ⇒ X by S(y) := Φ−1(y) ∩ U for all y ∈ Y . If
one of the following criteria holds, then ϕ is lower semicontinuous on U relative to Φ at ȳ:

(a) ϕ is lower semicontinuous on U relative to Φ−1(ȳ) and S is upper semicontinuous at ȳ;
(b) X is a reflexive Banach space, U is closed and convex, ϕ is weakly sequentially lower semicontinuous on

U , and S is partially weakly sequentially upper semicontinuous at ȳ.

Proof. Let a sequence {(xk, yk)}k∈N ⊂ X × Y satisfying yk → ȳ, distgph Φ(xk, yk) → 0, and {xk}k∈N +
ρB ⊂ U for some ρ > 0 be arbitrarily chosen. There exists a sequence {(x′k, y′k)}k∈N ⊂ gph Φ such that
d((x′k, y

′
k), (xk, yk))→ 0. Hence, y′k → ȳ and, for all sufficiently large k ∈ N, we have d(x′k, xk) < ρ, and,

consequently, x′k ∈ U .

(a) By Definition 3.8, distΦ−1(ȳ)(x
′
k) → 0. Then distΦ−1(ȳ)(xk) → 0 and, by Corollary 3.7, inequality (3.3)

holds, where Ω := Φ−1(ȳ).
(b) Passing to a subsequence (without relabeling), we can assume xk ⇀ x̂ for some x̂ ∈ conv{xk}k∈N ⊂ U since
{xk}k∈N is a bounded sequence of a reflexive Banach space and U is convex as well as closed. Hence, we
find ϕ(x̂) ≤ lim infk→+∞ ϕ(xk) by weak sequential lower semicontinuity of ϕ. Obviously, we have x′k ⇀ x̂.
By Definition 3.9, x̂ ∈ Φ−1(ȳ) holds true. Thus, infu∈Φ−1(ȳ)∩U ϕ(u) ≤ ϕ(x̂) ≤ lim infk→+∞ ϕ(xk).

As the sequence {(xk, yk)}k∈N has been chosen arbitrarily, the conclusion follows from Proposition 3.6.

The next assertion is an immediate consequence of Proposition 3.10 with the conditions from (b).

Corollary 3.11. Fix a reflexive Banach space X, a closed and convex set U ⊂ X, ϕ : X → R∞ which is weakly
sequentially lower semicontinuous on U , Φ: X ⇒ Y where Y is another Banach space, and some ȳ ∈ Y such
that U ∩Φ−1(ȳ)∩ domϕ 6= ∅. Then ϕ is lower semicontinuous on U relative to Φ at ȳ provided that one of the
following conditions is satisfied:

(a) gph Φ ∩ (U × Y ) is weakly sequentially closed;
(b) X is finite-dimensional and gph Φ ∩ (U × Y ) is closed.

Particularly, whenever x̄ ∈ Φ−1(ȳ) ∩ domϕ is fixed, ϕ is weakly sequentially lower semicontinuous, and
either gph Φ is weakly sequentially closed or gph Φ is closed while X is finite-dimensional, then ϕ is lower
semicontinuous near x̄ relative to Φ at ȳ.

In the upcoming subsections, we discuss sufficient conditions for the semicontinuity properties of a set-valued
mapping and an extended-real-valued function appearing in the conditions (a) of Proposition 3.10.

3.3. Sufficient conditions for lower semicontinuity of a function relative to a set

In the statement below, we present some simple situations where a function is lower semicontinuous relative
to a set in the sense of Definition 3.3(a).

Proposition 3.12. Let X be a metric space, ϕ : X → R∞, and Ω, U ⊂ X be sets with Ω ∩ U ∩ domϕ 6= ∅.
Then ϕ is lower semicontinuous on U relative to Ω provided that one of the following conditions is satisfied:

(a) U ⊂ Ω;
(b) Ω ∩ U = {x̄}, and ϕ is lower semicontinuous at x̄;
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(c) x̄ ∈ Ω ∩ U is a minimizer of ϕ on U ;
(d) ϕ is uniformly continuous on U .

Proof. Under each of the condition (a), (b), and (c), the conclusion is straightforward since inequality (3.2) is
an immediate consequence of the following simple relations, respectively, holding with any U ′ ⊂ U :

(a) inf
u∈Ω∩U

ϕ(u) = inf
u∈U

ϕ(u), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) = inf
x∈U ′

ϕ(x) ≥ inf
x∈U

ϕ(x);

(b) inf
u∈Ω∩U

ϕ(u) = ϕ(x̄), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) = lim inf
x→U′ x̄

ϕ(x) ≥ lim inf
x→x̄

ϕ(x) ≥ ϕ(x̄);

(c) inf
u∈Ω∩U

ϕ(u) = ϕ(x̄), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) ≥ ϕ(x̄).

It remains to prove the claim under condition (d). Let a number ε > 0 be arbitrarily chosen. Let a subset
U ′ ⊂ X and a number ρ > 0 be such that U ′ + ρB ⊂ U . By (d), there is a δ > 0 such that

∀x, x′ ∈ U : d(x, x′) < δ =⇒ |ϕ(x)− ϕ(x′)| < ε.

Let a point x ∈ U ′ satisfy distΩ(x) < δ′ := min(ρ, δ). Then there is a point x′ ∈ Ω satisfying d(x, x′) < δ′. Hence,
x, x′ ∈ U , d(x, x′) < δ, and, consequently, |ϕ(x)− ϕ(x′)| < ε. Thus, we have infu∈Ω∩U ϕ(u) ≤ ϕ(x′) < ϕ(x) + ε,
and, consequently,

inf
u∈Ω∩U

ϕ(u) ≤ lim inf
x∈U ′, distΩ(x)→0

ϕ(x) + ε.

Taking the infimum on the right-hand side of the last inequality over ε and U ′, we arrive at (3.2).

As a corollary, we obtain sufficient conditions for the lower semicontinuity property from Definition 3.3 (b).

Corollary 3.13. Let X be a metric space, ϕ : X → R∞, Ω ⊂ X, and x̄ ∈ Ω ∩ domϕ. Then ϕ is lower
semicontinuous near x̄ relative to Ω provided that one of the following conditions is satisfied:

(a) x̄ ∈ int Ω;
(b) x̄ is an isolated point of Ω, and ϕ is lower semicontinuous at x̄;
(c) x̄ is an (unconditional) local minimizer of ϕ;
(d) ϕ is uniformly continuous near x̄.

It follows from Corollary 3.13(d) that each locally Lipschitz continuous function is lower semicontinuous near
a reference point relative to any set containing this point.

The subsequent result can be directly distilled from Corollary 3.11.

Proposition 3.14. Fix a reflexive Banach space X, a closed and convex set U ⊂ X, and ϕ : X → R∞ which is
weakly sequentially lower semicontinuous on U . Let Ω ⊂ X be chosen such that Ω∩U ∩ domϕ 6= ∅ while Ω∩U
is weakly sequentially closed. Then ϕ is lower semicontinuous on U relative to Ω.

As a corollary, we obtain the subsequent result.

Corollary 3.15. Fix a reflexive Banach space X, ϕ : X → R∞ which is weakly sequentially lower semicontin-
uous, and a weakly sequentially closed set Ω ⊂ X. Then, for each x̄ ∈ Ω ∩ domϕ, ϕ is lower semicontinuous
near x̄ relative to Ω.

Note that whenever X is finite-dimensional, ϕ : X → R∞ is lower semicontinuous, and Ω ⊂ X is closed, then
the assumptions of Corollary 3.15 hold trivially.

The following statement shows that lower semicontinuity relative to a set is preserved under decoupled
summation.
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Proposition 3.16. Fix n ∈ N with n ≥ 2. For each i ∈ {1, . . . , n}, let Xi be a metric space, ϕi : Xi → R∞,
Ωi, Ui ⊂ Xi, and Ωi ∩ Ui ∩ domϕi 6= ∅. Suppose that ϕi is lower semicontinuous on Ui relative to Ωi. Then
ϕ : X1 × . . .×Xn → R∞ given by

∀(x1, . . . , xn) ∈ X1 × . . .×Xn : ϕ(x1, . . . , xn) := ϕ1(x1) + . . .+ ϕn(xn)

is lower semicontinuous on U := U1 × . . .× Un relative to Ω := Ω1 × . . .× Ωn.

Proof. The assertion is a direct consequence of Definition 3.3 (a). More precisely, we find

inf
u∈Ω∩U

ϕ(u) =

n∑
i=1

inf
ui∈Ωi∩Ui

ϕi(ui) ≤
n∑
i=1

inf
U ′i+ρiB⊂Ui,

ρi>0

lim inf
xi∈U ′i ,

distΩi
(xi)→0

ϕi(xi) = inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′,

distΩ(x)→0

ϕ(x),

and this proves the claim.

3.4. A sufficient condition for upper semicontinuity of the inverse of a set-valued
mapping

The next statement presents a condition ensuring validity of the upper semicontinuity assumption which
appears in Proposition 3.10 (a).

Proposition 3.17. Let X and Y be metric spaces, Φ: X ⇒ Y , and (x̄, ȳ) ∈ gph Φ. Assume that Φ is metrically
subregular at (x̄, ȳ), i.e., that there exist a neighborhood U of x̄ and a constant L > 0 such that

∀x ∈ U : distΦ−1(ȳ)(x) ≤ L distΦ(x)(ȳ). (3.4)

Then, for each set U ′ ⊂ U satisfying x̄ ∈ U ′, the mapping SU ′ : Y ⇒ X, given by SU ′(y) := Φ−1(y) ∩ U ′ for
each y ∈ Y , is upper semicontinuous at ȳ.

Proof. Let a number ε > 0 as well as U ′ ⊂ U with x̄ ∈ U ′ be given. Choose a number δ ∈ (0, ε/L). Then, for
each y ∈ Bδ(ȳ) and each x ∈ SU ′(y), condition (3.4) yields distSU′ (ȳ)(x) = distΦ−1(ȳ)(x) ≤ Ld(y, ȳ) < Lδ < ε.
By Definition 3.8, SU ′ is upper semicontinuous at ȳ.

We note that the metric subregularity condition (3.4) from Proposition 3.17 already amounts to a qualification
condition addressing sets of type {x ∈ X | ȳ ∈ Φ(x)}, see Section 5 of [26]. Sufficient conditions for metric
subregularity can be found e.g. in [8, 20, 21, 33, 43, 45, 61].

We would like to point the reader’s attention to the fact that metric subregularity of Φ is a quantitative conti-
nuity property coming along with a modulus of subregularity L > 0 while upper semicontinuity of the mappings
SU ′ in Proposition 3.17 is just a qualitative continuity property. In this regard, there exist weaker sufficient
conditions ensuring validity of the upper semicontinuity requirements from Proposition 3.10 (a). However, it is
not clear if such conditions can be easily checked in terms of initial problem data while this is clearly possible
for metric subregularity as the aforementioned list of references underlines. Finally, we would like to mention
that in case where one wants to avoid fixing the component x̄ ∈ X in the preimage space in Proposition 3.17,
it is possible to demand that Φ−1 is Lipschitz upper semicontinuous at ȳ in the sense of page 10 in [39]. Again,
this is a quantitative continuity property.

Example 3.18. Let G : X → Y be a single-valued mapping between Banach spaces. Furthermore, let C ⊂ X
and K ⊂ Y be nonempty, closed sets. We investigate the feasibility mapping Φ: X ⇒ Y ×X given by Φ(x) :=
(G(x)−K,x−C) for all x ∈ X as well as some point x̄ ∈ X such that (x̄, (0, 0)) ∈ gph Φ and some neighborhood
U of x̄. Let us define S : Y ×X ⇒ X by means of S(y, z) := Φ−1(y, z) ∩ U for each pair (y, z) ∈ Y ×X. One
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can check that S is upper semicontinuous at (0, 0) if and only if

distK×C((G(xk), xk))→ 0 =⇒ lim
k→+∞

distG−1(K)∩C(xk) = 0

for each sequence {xk}k∈N ⊂ U , and this is trivially satisfied if G is continuous and X is finite-dimensional. For
the purpose of completeness, let us also mention that S is partially weakly sequentially upper semicontinuous
at (0, 0) if and only if

xk ⇀ x, distK×C((G(xk), xk))→ 0 =⇒ x ∈ G−1(K) ∩ C (3.5)

is valid for each sequence {xk}k∈N ⊂ U and each point x ∈ U . Again, this is inherent if G is continuous while
X is finite-dimensional and U is closed.

In infinite-dimensional situations, whenever G is continuously Fréchet differentiable and C as well as K are
convex, Robinson’s constraint qualification, given by

G′(x̄)

[⋃
α∈[0,+∞)

α(C − x̄)

]
−
⋃

α∈[0,+∞)
α(K −G(x̄)) = Y,

is equivalent to so-called metric regularity of Φ at (x̄, (0, 0)), see Proposition 2.89 of [10], and the latter is
sufficient for metric subregularity of Φ at (x̄, (0, 0)).

The final corollary of this section now follows from Propositions 3.10 and 3.17 and Corollary 3.13.

Corollary 3.19. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, ȳ ∈ Y , and x̄ ∈ Φ−1(ȳ) ∩ domϕ.
Assume that Φ is metrically subregular at (x̄, ȳ) and that ϕ satisfies one of the conditions (a)–(d) of
Corollary 3.13 with Ω := Φ−1(ȳ). Then ϕ is lower semicontinuous near x̄ relative to Φ at ȳ.

4. Optimality conditions and approximate stationarity

We consider the optimization problem

min{ϕ(x) | ȳ ∈ Φ(x)}, (P)

where ϕ : X → R∞ is an arbitrary function, Φ: X ⇒ Y is a set-valued mapping between Banach spaces, and
ȳ ∈ Im Φ. Let us mention that the model (P) is quite general and covers numerous important classes of opti-
mization problems, see e.g. [26, 47] for a discussion. The constrained problem (P) is obviously equivalent to the
unconditional minimization of the restriction ϕΦ−1(ȳ) of ϕ to Φ−1(ȳ). We say that x̄ is an ε-minimal point of
problem (P) on U if it is an ε-minimal point of ϕΦ−1(ȳ) on U . Analogously, stationary points of (P) are defined.

The next theorem presents dual (i.e., subdifferential/coderivative based) necessary conditions for ε-minimal
points of problem (P).

Theorem 4.1. Let X and Y be Banach spaces, ϕ : X → R∞ be lower semicontinuous, Φ: X ⇒ Y have closed
graph, and fix ȳ ∈ Y , x̄ ∈ domϕ ∩ Φ−1(ȳ), U ⊂ X, ε > 0, as well as δ > 0. Assume that Bδ(x̄) ⊂ U , and

(a) on U , ϕ is bounded from below and lower semicontinuous relative to Φ at ȳ;
(b) either X and Y are Asplund, or ϕ and gph Φ are convex.

Suppose that x̄ is an ε-minimal point of problem (P) on U . Then, for each η > 0, there exist points x1, x2 ∈ Bδ(x̄)
and y2 ∈ Φ(x2) ∩Bη(ȳ) such that ‖x2 − x1‖ < η, distgph Φ(x1, ȳ) < η, ϕ(x1) < ϕ(x̄) + η, and

0 ∈ ∂ϕ(x1) + ImD∗Φ(x2, y2) +
2ε

δ
B∗.
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Moreover, if ϕ and gph Φ are convex, then ϕ(x1) ≤ ϕ(x̄).

Proof. Since ϕ is bounded from below on U , and x̄ is an ε-minimal point of problem (P) on U , there exist
numbers c > 0 and ε′ ∈ (0, ε) such that

∀x ∈ U : ϕ(x) > ϕ(x̄)− c, (4.1a)

∀x ∈ Φ−1(ȳ) ∩ U : ϕ(x) > ϕ(x̄)− ε′. (4.1b)

For γ > 0 and γ1 > 0, let the functions φγ , φ̂γ,γ1 : X × Y → R∞ be given by

∀(x, y) ∈ X × Y : φγ(x, y) := ϕ(x) + γ
(
‖y − ȳ‖+ distgph Φ(x, y)

)
, (4.2a)

φ̂γ,γ1
(x, y) := φγ(x, y) + γ1 ‖x− x̄‖2 . (4.2b)

Set δ0 := δε′/ε, and choose numbers δ′ ∈ (δ0, δ) and ξ ∈ (0, δ − δ′) such that ξ(δ′ + 2) < 2(εδ′/δ − ε′). Fix an

arbitrary η > 0 and a positive number η′ < min(η, 2(δ− δ′)). Set γ1 := (ε′+ ξ)/(δ′)2. Observe that φ̂γ,γ1
(x̄, ȳ) =

ϕ(x̄), and φ̂γ,γ1
is bounded from below on Bδ′(x̄) × Y due to (4.1a). By Ekeland’s variational principle, see

Lemma 2.1, for each k ∈ N, there exists a point (xk, yk) ∈ Bδ′(x̄)× Y such that

φ̂k,γ1
(xk, yk) ≤ ϕ(x̄), (4.3a)

∀(x, y) ∈ Bδ′(x̄)× Y : φ̂k,γ1(x, y) + ξ ‖(x, y)− (xk, yk)‖ ≥ φ̂k,γ1(xk, yk). (4.3b)

It follows from (4.1a), (4.2), and (4.3a) that

k
(
‖yk − ȳ‖+ distgph Φ(xk, yk)

)
+ γ1 ‖xk − x̄‖2 ≤ ϕ(x̄)− ϕ(xk) < c,

and, consequently,

‖yk − ȳ‖+ distgph Φ(xk, yk) < c/k, (4.4a)

γ1 ‖xk − x̄‖2 ≤ ϕ(x̄)− ϕ(xk) (4.4b)

are valid for all k ∈ N. By (4.4a), yk → ȳ and distgph Φ(xk, yk) → 0 as k → +∞, and yk ∈ Bη′/4(ȳ) as well
as distgph Φ(xk, yk) < η′/4 follow for all k > 4c/η′. Recall that {xk}k∈N + ρB ⊂ Bδ(x̄) ⊂ U for any positive
ρ < δ − δ′. By Proposition 3.6, there exist an integer k̄ > 4c/η′ and a point x′ ∈ Φ−1(ȳ) ∩ U such that ϕ(x′) <
ϕ(xk̄) + ξ. By (4.1b), we have ϕ(x̄) − ϕ(x′) < ε′. Set γ := k̄, x̂ := xk̄, and ŷ := yk̄. Thus, ŷ ∈ Bη′/4(ȳ) and
distgph Φ(x̂, ŷ) < η′/4. By (4.4b),

γ1 ‖x̂− x̄‖2 ≤ (ϕ(x̄)− ϕ(x′)) + (ϕ(x′)− ϕ(x̂)) < ε′ + ξ = γ1(δ′)2.

Hence, we find ‖x̂− x̄‖ < δ′. In view of (4.2b), condition (4.3a) is equivalent to

φγ(x̂, ŷ) + γ1 ‖x̂− x̄‖2 ≤ ϕ(x̄). (4.5)

For each (x, y) ∈ Bδ′(x̄)× Y different from (x̂, ŷ), it follows from (4.2b) that

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖
=
φ̂γ,γ1

(x̂, ŷ)− φ̂γ,γ1
(x, y) + γ1

(
‖x− x̄‖2 − ‖x̂− x̄‖2

)
‖(x, y)− (x̂, ŷ)‖

≤ φ̂γ,γ1
(x̂, ŷ)− φ̂γ,γ1

(x, y) + γ1 ‖x− x̂‖ (‖x− x̄‖+ ‖x̂− x̄‖)
‖(x, y)− (x̂, ŷ)‖
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≤ φ̂γ,γ1(x̂, ŷ)− φ̂γ,γ1(x, y)

‖(x, y)− (x̂, ŷ)‖
+ γ1

(
‖x− x̄‖+ ‖x̂− x̄‖

)
,

and, consequently, in view of (4.3b),

sup
(x,y)∈(Bδ′ (x̄)×Y )\{(x̂,ŷ)}

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖
< ξ + 2γ1δ

′ =
2ε′ + ξ(δ′ + 2)

δ′
<

2ε

δ
.

Since x̂ is an interior point of Bδ′(x̄), it follows that

lim sup
(x,y)→(x̂,ŷ)

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖
<

2ε

δ
. (4.6)

By (4.2a) and (4.5), we find ϕ(x̂) ≤ ϕ(x̄), and due to (4.6), there is a number ε̂ ∈ (0, 2ε
δ ) such that

lim inf
(x,y)→(x̂,ŷ)

φγ(x, y) + ε̂ ‖(x, y)− (x̂, ŷ)‖ − φγ(x̂, ŷ)

‖(x, y)− (x̂, ŷ)‖
≥ 0.

Set ξ′ := 2ε/δ − ε̂ > 0. By definition of the Fréchet subdifferential, the above inequality yields

(0, 0) ∈ ∂ (φγ + ε̂ ‖(·, ·)‖) (x̂, ŷ). (4.7)

Condition (4.7) can be rewritten as (0, 0) ∈ ∂ (ϕ+ γg + h) (x̂, ŷ), where the functions g, h : X × Y → R are
given by

∀(x, y) ∈ X × Y : g(x, y) := distgph Φ(x, y),

h(x, y) := γ‖y − ȳ‖+ ε̂‖(x, y)− (x̂, ŷ)‖.

Note that g and h are Lipschitz continuous, and h is convex. As a next step, we apply a subdifferential sum
rule. We distinguish two cases.
Case 1: Let X and Y be Asplund spaces. Let us recall the estimates ‖x̂− x̄‖ < δ′ < δ, ‖ŷ − ȳ‖ < η′/4 < η/4,
distgph Φ(x̂, ŷ) < η′/4 < η/4, and ϕ(x̂) ≤ ϕ(x̄). By the fuzzy sum rule, see Lemma 2.2 (b), there exist points
(x1, y1), (u2, v2) ∈ X × Y arbitrarily close to (x̂, ŷ) with ϕ(x1) arbitrarily close to ϕ(x̂), so that

‖x1 − x̄‖ < δ, ‖u2 − x̄‖ < δ′, ϕ(x1) < ϕ(x̄) + η, ‖y1 − ȳ‖ <
η

2
,

‖v2 − ȳ‖ <
η′

2
, ‖u2 − x1‖ <

η′

2
, distgph Φ(x1, y1) <

η

2
, distgph Φ(u2, v2) <

η′

4
,

and subgradients x∗1 ∈ ∂ϕ(x1) and (u∗2, v
∗
2) ∈ ∂g(u2, v2) satisfying

‖x∗1 + γu∗2‖ < ε̂+
ξ′

2
.

Thus, x1 ∈ Bδ(x̄) and distgph Φ(x1, ȳ) < distgph Φ(x1, y1) + ‖y1 − ȳ‖ < η. In view of Lemma 2.3 (b), there exist
(x2, y2) ∈ gph Φ and (u∗′2 , v

∗′
2 ) ∈ Ngph Φ(x2, y2) such that

‖(x2, y2)− (u2, v2)‖ < distgph Φ(u2, v2) +
η′

4
<
η′

2
, ‖u∗′2 − u∗2‖ <

ξ′

2γ
.
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Set x∗2 := γu∗′2 and y∗ := −γv∗′2 . Thus, x∗2 ∈ D∗Φ(x2, y2)(y∗), and we have

‖y2 − ȳ‖ ≤‖v2 − ȳ‖+ ‖y2 − v2‖ < η′ < η,

‖x2 − x̄‖ ≤‖u2 − x̄‖+ ‖x2 − u2‖ < δ′ +
η′

2
< δ,

‖x2 − x1‖ ≤‖x2 − u2‖+ ‖u2 − x1‖ < η′ < η,

‖x∗1 + x∗2‖ ≤‖x∗1 + γ u∗2‖+ γ ‖u∗′2 − u∗2‖ < ε̂+ ξ′ =
2ε

δ
.

Case 2: Let ϕ and gph Φ be convex. We have x̂ ∈ Bδ′(x̄) ⊂ Bδ(x̄), ϕ(x̂) ≤ ϕ(x̄), ‖ŷ − ȳ‖ < η′/4, and
distgph Φ(x̂, ŷ) < η′/4 < η. By the convex sum rule, see Lemma 2.2 (a), there exist subgradients x∗1 ∈ ∂ϕ(x̂)
and (u∗2, v

∗
2) ∈ ∂g(x̂, ŷ) satisfying

‖x∗1 + γu∗2‖ ≤ ε̂.

In view of Lemma 2.3 (b), there exist (x2, y2) ∈ gph Φ and (u∗′2 , v
∗′
2 ) ∈ Ngph Φ(x2, y2) such that

‖(x2, y2)− (x̂, ŷ)‖ < distgph Φ(x̂, ŷ) +
η′

4
, ‖u∗′2 − u∗2‖ <

ξ′

γ
.

Set x1 := x̂, x∗2 := γu∗′2 , and y∗ := −γv∗′2 . Thus, x1 ∈ Bδ(x̄), distgph Φ(x1, ȳ) < η′/2 < η, ϕ(x1) ≤ ϕ(x̄), and
x∗2 ∈ D∗Φ(x2, y2)(y∗). Replacing (u2, v2) with (x̂, ŷ) in the corresponding estimates established in Case 1, we
obtain

‖y2 − ȳ‖ < η, ‖x2 − x̄‖ < δ, ‖x2 − x1‖ < η,

‖x∗1 + x∗2‖ ≤ ‖x∗1 + γ u∗2‖+ γ ‖u∗′2 − u∗2‖ < ε̂+ ξ′ =
2ε

δ
.

This completes the proof.

Clearly, Theorem 4.1 provides dual necessary conditions for ε-minimality of a feasible point of problem (P)
under some additional structural assumptions on the data which are almost for free in the finite-dimensional
setting, see Corollary 3.11, and of reasonable strength in the infinite-dimensional one. In the subsequent remark,
we comment on additional primal and dual conditions for ε-minimality which can be distilled from the proof of
Theorem 4.1.

Remark 4.2. (a) In the proof of Theorem 4.1, more sets of necessary conditions for local ε-minimality of a
feasible point of problem (P) have been established along the way. Moreover, the first part of the proof
does not use the linear structure of the spaces, i.e., the arguments work in the setting of general complete
metric spaces X and Y . The conditions can be of independent interest and are listed below. We assume
that X and Y are complete metric spaces and all the other assumptions of Theorem 4.1 are satisfied,
except condition (b).

Necessary conditions for local ε-minimality. There is a δ0 ∈ (0, δ) such that, for each δ′ ∈ (δ0, δ)
and η > 0, there exist points x̂ ∈ Bδ′(x̄) and ŷ ∈ Bη(ȳ) satisfying distgph Φ(x̂, ŷ) < η, and a number γ > 0
such that, with the function φγ : X × Y → R∞ given by

∀(x, y) ∈ X × Y : φγ(x, y) := ϕ(x) + γ
(
d(y, ȳ) + distgph Φ(x, y)

)
,

the following conditions hold:
� φγ(x̂, ŷ) ≤ ϕ(x̄), and
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� primal nonlocal condition (PNLC): sup
(x,y)6=(x̂,ŷ), x∈Bδ′ (x̄)

φγ(x̂, ŷ)− φγ(x, y)

d((x, y), (x̂, ŷ))
<

2ε

δ
,

� primal local condition (PLC): lim sup
(x,y)→(x̂,ŷ)

φγ(x̂, ŷ)− φγ(x, y)

d((x, y), (x̂, ŷ))
<

2ε

δ
,

� dual condition (DC) (X and Y are Banach spaces): condition (4.7) is satisfied with some ε̂ ∈ (0, 2ε
δ ).

The relationship between the conditions is as follows: (PNLC) ⇒ (PLC) ⇒ (DC). The dual conditions
in Theorem 4.1 are consequences of the above conditions.
Let us note that the left-hand side in (PNLC) is the nonlocal slope, see [24], of the function φγ + iBδ′ (x̄)

at (x̂, ŷ), while the left-hand side in (PLC) is the conventional slope of φγ at (x̂, ŷ).
(b) Since the function ϕ in Theorem 4.1 is assumed to be lower semicontinuous, it is automatically bounded

from below on some neighborhood of x̄. We emphasize that Theorem 4.1 requires all the conditions to
hold on the same set U containing a neighborhood of x̄.

As a consequence of Theorem 4.1, we obtain necessary conditions characterizing local minimizers of (P).

Corollary 4.3. Let X and Y be Banach spaces, ϕ : X → R∞ lower semicontinuous, Φ: X ⇒ Y have closed
graph, ȳ ∈ Y , and x̄ ∈ domϕ ∩ Φ−1(ȳ). Assume that

(a) the function ϕ is lower semicontinuous near x̄ relative to Φ at ȳ;
(b) either X and Y are Asplund, or ϕ and gph Φ are convex.

Suppose that x̄ is a local minimizer of (P). Then, for each ε > 0, there exist points x1, x2 ∈ Bε(x̄) and y2 ∈
Φ(x2) ∩Bε(ȳ) such that |ϕ(x1)− ϕ(x̄)| < ε and

0 ∈ ∂ϕ(x1) + ImD∗Φ(x2, y2) + εB∗.

Moreover, if ϕ and gph Φ are convex, then ϕ(x1) ≤ ϕ(x̄).

Proof. Let a number ε > 0 be arbitrarily chosen. Set ε′ := ε/2. By the assumptions and Remark 2.5, there
exists a δ ∈ (0, ε) such that on U := Bδ(x̄) the function ϕ is bounded from below and lower semicontinuous
relative to Φ at ȳ, and x̄ is an ε′δ-minimal point of ϕΦ−1(ȳ) on U . Thus, all the assumptions of Theorem 4.1 are
satisfied. Moreover, 2(ε′δ)/δ = ε and, since ϕ is lower semicontinuous, one can ensure that ϕ(x1) > ϕ(x̄) + ε.
Hence, taking any η ∈ (0, ε), the assertion follows from Theorem 4.1.

In the subsequent remark, we comment on the findings in Corollary 4.3.

Remark 4.4. (a) The analogues of the necessary conditions in Remark 4.2 (a) are valid in the setting of
Corollary 4.3, too. More precisely, it suffices to replace 2ε

δ with just ε in the involved conditions.
(b) The necessary conditions in Corollary 4.3 hold for each stationary point (not necessarily a local minimizer)

of problem (P).

We now consider an important particular case of problem (P), namely

min{ϕ(x) |x ∈ Ω}, (P̃)

where Ω ⊂ X is a nonempty subset of a Banach space. To obtain this setting from the one in (P), it suffices to
consider the set-valued mapping Φ: X ⇒ Y whose graph is given by gph Φ := Ω×Y . Here, Y can be an arbitrary
Asplund space, e.g., one can take Y := R. Observe that Φ−1(y) = Ω holds for all y ∈ Y . Hence, by Definition 3.8,
for all y ∈ Y , the mapping Φ−1 is upper semicontinuous at y. Moreover, Ngph Φ(x, y) = NΩ(x)× {0}. Thus, the
next statement is a consequence of Proposition 3.10 and Theorem 4.1.

Theorem 4.5. Let X be a Banach space, ϕ : X → R∞ lower semicontinuous, Ω ⊂ X a closed set, and fix
x̄ ∈ domϕ ∩ Ω, U ⊂ X, ε > 0, and δ > 0. Assume that Bδ(x̄) ⊂ U , and
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(a) on U , the function ϕ is bounded from below and lower semicontinuous relative to Ω;
(b) either X is Asplund, or ϕ and Ω are convex.

Suppose that x̄ is an ε-minimal point of problem (P̃) on U . Then, for each η > 0, there exist points x1 ∈ Bδ(x̄)
and x2 ∈ Ω ∩Bδ(x̄) such that ‖x2 − x1‖ < η, ϕ(x1) < ϕ(x̄) + η, and

0 ∈ ∂ϕ(x1) +NΩ(x2) +
2ε

δ
B∗.

Moreover, if ϕ and Ω are convex, then ϕ(x1) ≤ ϕ(x̄).

The next corollary follows immediately.

Corollary 4.6. Let X be a Banach space, ϕ : X → R∞ lower semicontinuous, Ω ⊂ X a closed set, and x̄ ∈
domϕ ∩ Ω. Assume that

(a) the function ϕ is lower semicontinuous near x̄ relative to Ω;
(b) either X is Asplund, or ϕ and Ω are convex.

Suppose that x̄ is a local minimizer of (P̃). Then, for each ε > 0, there exist x1 ∈ Bε(x̄) and x2 ∈ Ω ∩ Bε(x̄)
such that |ϕ(x1)− ϕ(x̄)| < ε and

0 ∈ ∂ϕ(x1) +NΩ(x2) + εB∗.

Moreover, if ϕ and Ω are convex, then ϕ(x1) ≤ ϕ(x̄).

Whenever ϕ is Lipschitz continuous around x̄, the assertion of Corollary 4.6 is an immediate consequence of
Fermat’s rule and the sum rules stated in Lemma 2.2. We note that Corollary 4.6 is applicable in more general
situations, exemplary, if ϕ is only uniformly continuous in a neighborhood of the investigated local minimizer,
see Corollary 3.13, or if X is finite-dimensional, see Corollary 3.15.

Note that the dual necessary optimality conditions in Corollaries 4.3 and 4.6 do not hold at the reference
point but at some other points arbitrarily close to it. Such conditions describe certain properties of admissible
points which can be interpreted as a kind of dual approximate stationarity. The precise meaning of approximate
stationarity will be discussed in Section 6.1 in the setting of geometrically-constrained optimization problems.

5. Generalized separation and extremal principle

Below, we discuss certain generalized extremality and separation properties of a collection of closed subsets
Ω1, . . . ,Ωn of a Banach space X, having a common point x̄ ∈

⋂n
i=1 Ωi. Here, n is an integer satisfying n ≥ 2.

We write {Ω1, . . . ,Ωn} to denote the collection of sets as a single object.
We begin with deriving necessary conditions for so-called F-extremality of a collection of sets. The property

in the definition below is determined by a nonempty family F of nonnegative lower semicontinuous functions
f : Xn → R∞ and mimics the corresponding conventional one, see e.g. [44].

Definition 5.1. Let a family F described above be given. Suppose that, for each f ∈ F , the function
f̂ : Xn → R∞ is defined by

∀z := (x1, . . . , xn) ∈ Xn : f̂(z) := f(x1 − xn, . . . , xn−1 − xn, xn). (5.1)

The collection {Ω1, . . . ,Ωn} is F-extremal at x̄ if, for each ε > 0, there exist a function f ∈ F and a number
ρ > 0 such that f(0, . . . , 0, x̄) < ε and

∀xi ∈ Ωi + ρB (i = 1, . . . , n) : f̂(x1, . . . , xn) > 0. (5.2)
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The following theorem, which is based on Theorem 4.5, provides a general necessary condition for
F-extremality.

Theorem 5.2. Assume that

(a) there is a neighborhood U of x̄ such that, for each f ∈ F , the function f̂ : Xn → R∞ defined by (5.1) is
lower semicontinuous on Un relative to Ω := Ω1 × . . .× Ωn;

(b) either X is Asplund, or Ω1, . . . ,Ωn and all f ∈ F are convex.

Suppose that the collection {Ω1, . . . ,Ωn} is F-extremal at x̄. Then, for each ε > 0 and η > 0, there exist a
function f ∈ F with f(0, . . . , 0, x̄) < ε and points xi ∈ Ωi ∩Bε(x̄), x′i ∈ Bη(xi), and x∗i ∈ X∗ (i = 1, . . . , n) such
that

n∑
i=1

distNΩi
(xi) (x∗i ) < ε, (5.3a)

0 < f(w) < f(0, . . . , 0, x̄) + η, (5.3b)

−

(
x∗1, . . . , x

∗
n−1,

n∑
i=1

x∗i

)
∈ ∂f(w), (5.3c)

where w := (x′1 − x′n, . . . , x
′
n−1 − x′n, x

′
n) ∈ Xn. Moreover, if f and Ω1, . . . ,Ωn are convex, then f(w) ≤

f(0, . . . , 0, x̄).

Proof. Let arbitrary numbers ε > 0 and η > 0 be fixed. Choose a number δ ∈ (0, ε) so that Bδ(x̄) ⊂ U , and set
ε′ := εmin(δ/2, 1). By Definition 5.1, there exist a function f ∈ F and a number ρ > 0 such that f(0, . . . , 0, x̄) <

ε′ ≤ ε, and condition (5.2) holds, where the function f̂ : Xn → R∞ is defined by (5.1). Observe that Ω is a

closed subset of the Banach space Xn, z̄ := (x̄, . . . , x̄) ∈ Ω, and f̂(z̄) = f(0, . . . , 0, x̄) < ε′. Since the function

f is nonnegative, so is f̂ , and, consequently, z̄ is an ε′-minimal point of f̂Ω (as well as f̂) on Xn. Set η′ :=
min(η, ρ). By Theorem 4.5, there exist points z := (x1, . . . , xn) ∈ Ω ∩ Bδ(z̄), z′ := (x′1, . . . , x

′
n) ∈ Bη′(z), and

x∗ := (x∗1, . . . , x
∗
n) ∈ (X∗)n such that f(w) = f̂(z′) < f̂(z̄) + η = f(0, . . . , 0, x̄) + η, and

− x∗ ∈ ∂f̂(z′), distNΩ(z)(x
∗) <

2ε′

δ
≤ ε. (5.4)

Moreover, if f and Ω1, . . . ,Ωn are convex, then f(w) ≤ f(0, . . . , 0, x̄). Observe that x′i ∈ Ωi + ρB (i = 1, . . . , n),

and it follows from (5.2) that f(w) = f̂(z′) > 0 which shows (5.3b).

The function f̂ given by (5.1) is a composition of f and the continuous linear mapping A : Xn → Xn given
as follows:

∀(u1, . . . , un) ∈ Xn : A(u1, . . . , un) := (u1 − un, . . . , un−1 − un, un).

The mapping A is obviously a bijection. It is easy to check that the adjoint mapping A∗ : (X∗)n → (X∗)n is of
the form

∀(u∗1, . . . , u∗n) ∈ (X∗)n : A∗(u∗1, . . . , u
∗
n) :=

(
u∗1, . . . , u

∗
n−1, u

∗
n −

n−1∑
i=1

u∗i

)
. (5.5)

By the Fréchet subdifferential chain rule, which can be distilled from Theorem 1.66 and Proposition 1.84 in [51],

we obtain ∂f̂(z′) = A∗∂f(w), where w = Az′ = (x′1 − x′n, . . . , x′n−1 − x′n, x′n). In view of (5.5), the inclusion in
(5.4) is equivalent to (5.3c). It now suffices to observe that NΩ(z) = NΩ1

(x1)× . . .×NΩn(xn), and, consequently,
the inequality in (5.4) yields (5.3a).
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For the conclusions of Theorem 5.2 to be non-trivial, one must ensure that the family F satisfies the following
conditions:

(a) inff∈F f(0, . . . , 0, x̄) = 0;
(b) lim inf

w→(0,...,0,x̄), f∈F, f(w)↓0, w∗∈∂f(w)
‖w∗‖ > 0.

A typical example of such a family is given by the collection FA of functions of type

∀z := (x1, . . . , xn) ∈ Xn : fa(z) := max
1≤i≤n−1

‖xi − ai‖, (5.6)

where a := (a1, . . . , an−1) ∈ Xn−1. The proofs of the conventional extremal principle and its extensions usually
employ such functions. Note that functions from FA are constant in the last variable.

It is easy to see that, for each fa ∈ FA and z := (x1, . . . , xn) ∈ Xn, the value fa(z) is the maximum norm of
(x1 − a1, . . . , xn−1 − an−1) in Xn−1. Thus, fa(z) > 0 if and only if (x1, . . . , xn−1) 6= a, and

fa(0, . . . , 0, x̄) = max
1≤i≤n−1

‖ai‖ → 0 as a→ 0

showing (a). Moreover, ∂fa(z) 6= ∅ for all z ∈ Xn and, if fa(z) > 0, then ‖w∗‖ = 1 for all w∗ ∈ ∂fa(w), i.e., the
limit in (b) equals 1. Observe also that, since each function fa ∈ FA is convex and Lipschitz continuous, the same

holds true for the corresponding function f̂a defined by (5.1). Hence, f̂a is automatically lower semicontinuous
near each point of Xn relative to each set containing this point, see Corollary 3.13.

When fa ∈ FA is given by (5.6), condition (5.2) takes the following form:

n−1⋂
i=1

(Ωi + ρB− ai) ∩ (Ωn + ρB) = ∅. (5.7)

With this in mind, the extremality property in Definition 5.1 admits a geometric interpretation.

Proposition 5.3. The collection {Ω1, . . . ,Ωn} is FA-extremal at x̄ if and only if, for each ε > 0, there exist
vectors a1, . . . , an−1∈ X and a number ρ > 0 such that max1≤i≤n−1 ‖ai‖ < ε, and condition (5.7) holds.

The characterization in Proposition 5.3 means that sets with nonempty intersection can be “pushed apart”
by arbitrarily small translations in such a way that even small enlargements of the sets become nonintersecting.
Note that condition (5.7) is stronger than the conventional extremality property originating from [44], which
corresponds to setting ρ = 0 in (5.7). The converse statement is not true as the next example shows.

Example 5.4. Consider the closed sets Ω1,Ω2 ⊂ R2 given by

Ω1 := {(x, y) | x ≥ 0, y = 0} , Ω2 :=
{

(x, y) | x ≥ 0, |y| ≥ e−x
}
∪ {(0, 0)},

see Figure 1(A). We have Ω1 ∩ Ω2 = {(0, 0)} and (Ω1 − (t, 0)) ∩ Ω2 = ∅ for each t < 0. At the same time,
(Ω1 +ρB−a)∩ (Ω2 +ρB) 6= ∅ for all a ∈ R2 and ρ > 0. By Proposition 5.3, {Ω1,Ω2} is not FA-extremal at (0, 0).

Theorem 5.2 produces the following necessary condition for FA-extremality.

Corollary 5.5. Assume that either X is Asplund, or Ω1, . . . ,Ωn are convex. Suppose that the collection
{Ω1, . . . ,Ωn} is FA-extremal at x̄. Then, for each ε > 0, there exist points xi ∈ Ωi ∩ Bε(x̄) and x∗i ∈ X∗
(i = 1, . . . , n) satisfying (5.3a) and

n∑
i=1

x∗i = 0, (5.8a)
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Figure 1. Visualization of the sets Ω1 and Ω2 from Examples 5.4 and 5.6.

n−1∑
i=1

‖x∗i ‖ = 1. (5.8b)

Moreover, for each τ ∈ (0, 1), the points xi and x∗i (i = 1, . . . , n) can be chosen so that

n−1∑
i=1

〈x∗i , xn − xi + ai〉 > τ max
1≤i≤n−1

‖xn − xi + ai‖, (5.9)

where a1, . . . , an−1 are vectors satisfying the characterization in Proposition 5.3.

Proof. Fix ε > 0 arbitrarily. Recall that, for each fa ∈ FA, the function f̂a : Xn → R∞ defined according to (5.1)
is lower semicontinuous near z̄ := (x̄, . . . , x̄) relative to Ω := Ω1× . . .×Ωn. By definition of FA, Proposition 5.3,
and Theorem 5.2, for each η > 0, there exist vectors a1, . . . , an−1 ∈ X, points xi ∈ Ωi ∩ Bε(x̄), x′i ∈ Bη(xi),
and x∗i ∈ X∗ (i = 1, . . . , n), and a number ρ > 0 such that max1≤i≤n−1 ‖ai‖ < ε, and conditions (5.3) and (5.7)
hold, where w := (x′1 − x′n, . . . , x′n−1 − x′n, x′n) and the function f is replaced by fa defined by (5.6). Clearly, we
find

∂fa(w) = ∂‖ · ‖Xn−1(x′1 − x′n − a1, . . . , x
′
n−1 − x′n − an−1)× {0},

where ‖ · ‖Xn−1 is the maximum norm in Xn−1. Condition (5.8a) follows immediately from (5.3c). Moreover,
since fa(w) > 0, we can apply Corollary 2.4.16 of [60] to find that condition (5.8b) is satisfied, and

n−1∑
i=1

〈x∗i , x′n − x′i + ai〉 = fa(w). (5.10)

Let an arbitrary number τ ∈ (0, 1) be fixed, and let η := ρ(1− τ)/4. In view of (5.7), we have

max
1≤i≤n−1

‖xn − xi + ai‖ ≥ ρ. (5.11)

Using (5.6), (5.8b), (5.10), and (5.11), we can prove the remaining estimate (5.9):

n−1∑
i=1

〈x∗i , xn − xi + ai〉 ≥
n−1∑
i=1

(
〈x∗i , x′n − x′i + ai〉 − 2 ‖x∗i ‖ max

1≤j≤n

∥∥xj − x′j∥∥)
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>

n−1∑
i=1

〈x∗i , x′n − x′i + ai〉 − 2η = max
1≤i≤n−1

‖x′n − x′i + ai‖ − 2η

> max
1≤i≤n−1

‖xn − xi + ai‖ − 4η = max
1≤i≤n−1

‖xn − xi + ai‖ − ρ(1− τ)

≥ τ max
1≤i≤n−1

‖xn − xi + ai‖.

This completes the proof.

The next example illustrates application of Theorem 5.2 in the case where F consists of discontinuous
functions.

Example 5.6. Consider the closed sets Ω1,Ω2 ⊂ R2 given by

Ω1 := {(x, y) | max(y, x+ y) ≥ 0} , Ω2 := {(x, y) | y ≤ 0} .

Let us equip R2 with the Euclidean norm. We have (0, 0) ∈ Ω1∩Ω2 and int(Ω1∩Ω2) = {(x, y) | y < 0, x+y > 0}.
Hence, these sets cannot be “pushed apart”, and {Ω1,Ω2} is not extremal at (0, 0) in the conventional sense,
see Figure 1(B) for an illustration. Let the family F consist of all nonnegative lower semicontinuous functions
ft : R2 × R2 → R∞ of the type

∀(x, y), (u, v) ∈ R2 × R2 : ft((x, y), (u, v)) := ‖(x, y + t)‖+ i(−∞,0](u), (5.12)

corresponding to all t ≥ 0.
We now show that {Ω1,Ω2} is F-extremal at (0, 0). Indeed, for each ε > 0 and t ∈ (0, ε), we have

ft((0, 0), (0, 0)) = t < ε. The function from (5.1) takes the form

∀(x, y), (u, v) ∈ R2 × R2 : f̂t((x, y), (u, v)) := ‖(x− u, y − v + t)‖+ i(−∞,0](u).

Let ρ ∈ (0, t/3), (x, y) ∈ Ω1 + ρB, and (u, v) ∈ Ω2 + ρB. If u > 0 or x 6= u, then f̂t((x, y), (u, v)) > 0. Let

x = u ≤ 0. Then y > −2ρ, v < ρ, and, consequently, f̂t((x, y), (u, v)) = |y − v + t| > −3ρ + t > 0. Hence,
condition (5.2) holds, i.e., {Ω1,Ω2} is F-extremal at (0, 0).

For each t ≥ 0, f̂t is Lipschitz continuous on dom f̂t = R2× ((−∞, 0]×R) and, for every point ((x, y), (u, v)) ∈
dom f̂t, the distance distΩ1×Ω2

((x, y), (u, v)) is attained at some point ((x′, y′), (u′, v′)) with u′ = u, i.e.,

((x′, y′), (u′, v′)) ∈ dom f̂t. Using this, it is easy to see from Definition 3.3 (b) that f̂t is lower semicontinuous
near ((0, 0), (0, 0)) relative to Ω1 × Ω2.

By Theorem 5.2, for each ε > 0, there exist a number t ∈ (0, ε) and points (x, y) ∈ Ω1 ∩ Bε(0, 0), (u, v) ∈
Ω2 ∩Bε(0, 0), (x∗, y∗), (u∗, v∗) ∈ R2, and w ∈ R2 × R2 such that 0 < ft(w) <∞ and

distNΩ1 (x,y) ((x∗, y∗)) + distNΩ2 (u,v) ((u∗, v∗)) < ε, (5.13a)

− ((x∗, y∗), (x∗, y∗) + (u∗, v∗)) ∈ ∂ft(w). (5.13b)

In view of (5.12), it follows from (5.13b) that ‖(x∗, y∗)‖ = 1, x∗+u∗ ≤ 0, and y∗+ v∗ = 0. When ε is sufficiently
small, condition (5.13a) implies one of the following situations:

– x < 0, y = v = 0, and (x∗, y∗) as well as (u∗, v∗) can be made arbitrarily close to (0,−1) and (0, 1),
respectively,

– x > 0, y = −x, v = 0, and (x∗, y∗) as well as (u∗, v∗) can be made arbitrarily close to (−
√

2/2,−
√

2/2)
and (0,

√
2/2), respectively.

This can be interpreted as a kind of generalized separation.
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6. Geometrically-constrained optimization problems with
composite objective function

In this section, we are going to apply the theory of Section 4 to the optimization problem

min{f(x) + q(x) |G(x) ∈ K, x ∈ C} (Q)

where f : X → R is continuously differentiable, q : X → R∞ is lower semicontinuous, G : X → Y is continuously
differentiable, and C ⊂ X as well as K ⊂ Y are nonempty and closed. Here, X and Y are assumed to be
Banach spaces. Throughout the section, the feasible set of (Q) will be denoted by S, and we implicitly assume
S ∩ dom q 6= ∅ in order to avoid trivial situations.

Observe that the objective function ϕ := f + q can be decomposed into a regular part f and some challenging
irregular part q while the constraints in (Q) are stated in so-called geometric form. In this regard, the model
(Q) still covers numerous applications ranging from data science and image processing (in case where q is a
sparsity-promoting functional) over conic programs (in which case K is a convex cone) to disjunctive programs
which comprise, exemplary, complementarity- and cardinality-constrained problems (in this situation, K is a
nonconvex set of combinatorial structure).

In the subsequently stated remark, we embed program (Q) into the rather general framework which has been
discussed in Section 4.

Remark 6.1. Observing that f is differentiable, we find

∀x ∈ X : ∂ϕ(x) = ∂(f + q)(x) = f ′(x) + ∂q(x)

from the sum rule stated in Corollary 1.12.2 of [41]. The feasibility mapping Φ: X ⇒ Y ×X associated with
(Q) is given by means of Φ(x) := (G(x)−K,x− C) for all x ∈ X, see Example 3.18. We find

gph Φ = {(x, (y, x′)) ∈ X × Y ×X | (G(x)− y, x− x′) ∈ K × C}. (6.1)

Observing that the continuously differentiable mapping (x, y, x′) 7→ (G(x) − y, x − x′) possesses a surjective
derivative, we can apply the change-of-coordinates formula from Corollary 1.15 of [51] in order to obtain

Ngph Φ(x, (y, x′)) =
{

(G′(x)∗λ+ η,−λ,−η) ∈ X∗ × Y ∗ ×X∗
∣∣λ ∈ NK(G(x)− y), η ∈ NC(x− x′)

}
for each triplet (x, (y, x′)) ∈ gph Φ, and this yields

D∗Φ(x, (y, x′))(λ, η) =

{
G′(x)∗λ+ η if λ ∈ NK(G(x)− y), η ∈ NC(x− x′),
∅ otherwise

for arbitrary λ ∈ Y ∗ and η ∈ X∗.

6.1. Approximate stationarity and uniform qualification condition

The subsequent theorem is a simple consequence of Corollary 4.3 and Remark 6.1, and provides a necessary
optimality condition for (Q).

Theorem 6.2. Fix x̄ ∈ S ∩ dom q and assume that

(a) the function f + q is lower semicontinuous near x̄ relative to Φ from Remark 6.1 at (0, 0);
(b) either X and Y are Asplund, or f , q, and gph Φ from (6.1) are convex.
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Suppose that x̄ is a local minimizer of (Q). Then, for each ε > 0, there exist points x, x′, x′′ ∈ Bε(x̄) and y ∈ εB
such that |q(x)− q(x̄)| < ε and

0 ∈ f ′(x) + ∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′) + εB∗. (6.2)

In the subsequent remark, we comment on some special situations where the assumptions of Theorem 6.2
are naturally valid and which can be checked in terms of initial data.

Remark 6.3. Let x̄ ∈ S ∩ dom q. Due to Proposition 3.10, Corollaries 3.11 and 3.19, and Example 3.18, each
of the following conditions implies condition (a) of Theorem 6.2:

(a) the function f + q satisfies one of the conditions (a)-(d) in Corollary 3.13 and the mapping Φ from
Remark 6.1 is metrically subregular at (x̄, (0, 0)), see Example 3.18;

(b) X is reflexive, the functions f and q are weakly sequentially lower semicontinuous, and condition (3.5)
holds for all sequences {xk}k∈N ⊂ X and all points x ∈ X.

Furthermore, condition (b) of Theorem 6.2 is valid whenever X and Y are Asplund, or if f , q, and C are convex,
K is a convex cone, and G is K-convex in the following sense:

∀x, x′ ∈ X ∀s ∈ [0, 1] : G(sx+ (1− s)x′)− sG(x)− (1− s)G(x′) ∈ K.

We note that (Q) already satisfies condition (b) of Remark 6.3 as soon as X and Y are finite-dimensional.
In the presence of condition (b) from Remark 6.3, Theorem 6.2 is closely related to Proposition 3.3 of [11] as
soon as q is absent.

Due to Theorem 6.2, the following definition is reasonable.

Definition 6.4. A point x̄ ∈ S ∩ dom q is an approximately stationary point of (Q) if, for each ε > 0, there
exist points x, x′, x′′ ∈ Bε(x̄) and y ∈ εB such that |q(x)− q(x̄)| < ε and (6.2) are valid.

Approximate necessary optimality conditions in terms of Fréchet subgradients and normals can be traced
back to the 1980s, see e.g. [40, 44] and the references therein. These concepts were used in Section 3.3.4 of [13] in
order to state approximate stationarity conditions in form of a fuzzy multiplier rule for optimization problems
in Fréchet smooth Banach spaces with lower semicontinuous objective function and standard inequality and
equality constraints.

In order to compare the notion of stationarity from Definition 6.4 to others from the literature, let us mention
an equivalent characterization of asymptotic stationarity in terms of sequences.

Remark 6.5. A point x̄ ∈ S ∩ dom q is approximately stationary if and only if there are sequences
{xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and {ηk}k∈N ⊂ X∗ such that xk → x̄, x′k → x̄, x′′k → x̄, yk → 0,
ηk → 0, q(xk)→ q(x̄), and

∀k ∈ N : ηk ∈ f ′(xk) + ∂q(xk) +G′(x′k)∗NK(G(x′k)− yk) +NC(x′′k).

In case where X and Y are finite-dimensional while q is locally Lipschitzian, a similar approximate stationarity
condition in terms of sequences has been investigated in Sections 4, 5.1 of [47]. In [11], the authors considered the
model (Q) with convex sets K and C in the absence of q. Generally, using approximate notions of stationarity in
nonlinear programming can be traced back to [2, 6]. Let us mention that in all these papers, the authors speak
of asymptotic or sequential stationarity conditions. A sequential Lagrange multiplier rule for convex programs
in Banach spaces can be found already in [58].

During the last decade, the concept of approximate stationarity has been extended to several classes of
optimization problems comprising, exemplary, complementarity- and cardinality-constrained programs, see [3,
36, 55], conic optimization problems, see [4], smooth geometrically-constrained optimization problems in Banach
spaces, see [11], and nonsmooth Lipschitzian optimization problems in finite-dimensional spaces, see [47, 48].
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In each of the aforementioned situations, it has been demonstrated that approximate stationarity, on the one
hand, provides a necessary optimality condition in the absence of constraint qualifications, and Theorem 6.2
demonstrates that this is the case for our concept from Definition 6.4 as well under reasonable assumptions.
On the other hand, the results from the literature underline that approximate stationarity is naturally satisfied
for accumulation points of sequences generated by some solution algorithms. In Section 6.2, we extend these
observations to the present setting.

Assume that x̄ ∈ S ∩dom q is an approximately stationary point of (Q). Due to Remark 6.5, we find sequences
{xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and {ηk}k∈N ⊂ X∗ satisfying xk → x̄, x′k → x̄, x′′k → x̄, yk → 0,
ηk → 0, q(xk)→ q(x̄), and ηk ∈ f ′(xk)+∂q(xk)+G′(x′k)∗NK(G(x′k)−yk)+NC(x′′k) for each k ∈ N. Particularly,
we find sequences {λk}k∈N ⊂ Y ∗ and {µk}k∈N ⊂ X∗ of multipliers and a sequence {ξk}k∈N ⊂ X∗ of subgradi-
ents such that ηk = f ′(xk) + ξk + G′(x′k)∗λk + µk, λk ∈ NK(G(x′k) − yk), µk ∈ NC(x′′k), and ξk ∈ ∂q(xk) for

each k ∈ N. Assuming for a moment λk
∗
⇀ λ, µk

∗
⇀ µ, and ξk

∗
⇀ ξ for some λ ∈ Y ∗ and µ, ξ ∈ X∗, we find

λ ∈ NK(G(x̄)), µ ∈ NC(x̄), and ξ ∈ ∂q(x̄) by definition of the limiting normal cone and subdifferential,
respectively, as well as 0 = f ′(x̄) + ξ + G′(x̄)∗λ + µ, i.e., a multiplier rule is valid at x̄ which is referred to
as M-stationarity in the literature.

Definition 6.6. A feasible point x̄ ∈ S ∩ dom q is an M-stationary point of (Q) if

0 ∈ f ′(x̄) + ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄).

Let us note that in the case of standard nonlinear programming, where q vanishes while C := X, Y :=
Rm1+m2 , and K := (−∞, 0]m1 ×{0}m2 for m1,m2 ∈ N, the system of M-stationarity coincides with the classical
Karush–Kuhn–Tucker system.

One can easily check by means of simple examples that approximately stationary points of (Q) do not need
to be M-stationary even in finite dimensions. Roughly speaking, this phenomenon is caused by the fact that
the multiplier and subgradient sequences {λk}k∈N, {µk}k∈N, and {ξk}k∈N in the considerations which prefixed
Definition 6.6 do not need to be bounded, see Section 3.1 of [47] for related observations. The following example
is inspired by Example 3.3 of [47].

Example 6.7. We consider X = Y = C := R, set f(x) := x, q(x) := 0, as well as G(x) := x2 for all x ∈ R,
and fix K := (−∞, 0]. Let us investigate x̄ := 0. Note that this is the only feasible point of the associated
optimization problem (Q) and, thus, its uniquely determined global minimizer. Due to f ′(x̄) = 1 and G′(x̄) = 0,
x̄ cannot be an M-stationary point of (Q). On the other hand, setting

xk := 0, x′k := − 1

2k
, yk :=

1

4k2
, ηk := 0, λk := k

for each k ∈ N, we have xk → x̄, x′k → x̄, yk → 0, ηk → 0, as well as ηk = f ′(xk) + G′(x′k)∗λk and λk ∈
NK(G(x′k)− yk) for each k ∈ N, i.e., x̄ is approximately stationary for (Q). Observe that {λk}k∈N is unbounded.

Let us underline that the above example demonstrates that local minimizers of (Q) do not need to be
M-stationary in general while approximate stationarity serves as a necessary optimality condition under some
assumptions on the data which are inherent in finite dimensions, see Theorem 6.2 and Remark 6.3. Nevertheless,
M-stationarity turned out to be a celebrated stationarity condition in finite-dimensional optimization. On the
one hand, it is restrictive enough to exclude non-reasonable feasible points of (Q) when used as a necessary
optimality condition. On the other hand, it is weak enough to hold at the local minimizers of (Q) under very
mild qualification conditions. Exemplary, we would like to refer the reader to [25] where this is visualized by
so-called disjunctive programs where K is the union of finitely many polyhedral sets. Another interest in M-
stationarity arises from the fact that this system can often be solved directly in order to identify reasonable
feasible points of (Q), see e.g. [27, 29]. In infinite-dimensional optimization, particularly, in optimal control,
M-stationarity has turned out to be of limited practical use since the limiting normal cone to nonconvex sets in
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function spaces is uncomfortably large due to convexification effects arising when taking weak limits, see e.g.
[30, 49].

Due to this interest in M-stationarity, at least from the finite-dimensional point of view, we aim to find
conditions guaranteeing that a given approximately stationary point of (Q) is already M-stationary.

Definition 6.8. We say that the uniform qualification condition holds at x̄ ∈ S ∩ dom q whenever

lim sup
x→x̄, x′→x̄, x′′→x̄,
y→0, q(x)→q(x̄)

(∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′)) ⊂ ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄).

By construction, the uniform qualification condition guarantees that a given approximately stationary point
of (Q) is already M-stationary as desired.

Proposition 6.9. Let x̄ ∈ S ∩ dom q satisfy the uniform qualification condition. If x̄ is an approximately
stationary point of (Q), then it is M-stationary.

Proof. By definition of approximate stationarity, for each k ∈ N, we find xk, x
′
k, x
′′
k ∈ B1/k(x̄), yk ∈ 1

kB, and

ηk ∈ 1
kB
∗ such that |q(xk)− q(x̄)| < 1

k and ηk − f ′(xk) ∈ ∂q(xk) +G′(x′k)∗NK(G(x′k)− yk) +NC(x′′k). Since f
is assumed to be continuously differentiable, we find ηk − f ′(xk) → −f ′(x̄). Thus, by validity of the uniform
qualification condition, it holds

−f ′(x̄) ∈ lim sup
k→+∞

(∂q(xk) +G′(x′k)∗NK(G(x′k)− yk) +NC(x′′k)) ⊂ ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄),

i.e., x̄ is an M-stationary point of (Q).

Combining this with Theorem 6.2 yields the following result.

Corollary 6.10. Let x̄ ∈ S ∩ dom q be a local minimizer of (Q) which satisfies the assumptions of Theorem 6.2
as well as the uniform qualification condition. Then x̄ is M-stationary.

Observe that we do not need any so-called sequential normal compactness condition, see Section 1.1.4 of [51],
for the above statement to hold which pretty much contrasts the results obtained in Section 5 of [51]. Indeed,
sequential normal compactness is likely to fail in the function space context related to optimal control, see [46].

Let us point the reader’s attention to the fact that the uniform qualification condition is not a constraint
qualification in the narrower sense for (Q) since it also depends on (parts of) the objective function. Nevertheless,
Corollary 6.10 shows that it may serve as a qualification condition for M-stationarity of local minimizers under
mild assumptions on the data. In the absence of q, the uniform qualification condition is related to other
prominent so-called sequential or asymptotic constraint qualifications from the literature which address several
different kinds of optimization problems, see e.g. [1, 3, 5, 11, 47, 48, 55]. In Section 6.3, we demonstrate by
means of a prominent setting from optimal control that the uniform qualification condition may hold in certain
situations where q is present, see Lemma 6.17.

Remark 6.11. Note that in the particular setting q ≡ 0, the uniform qualification condition from Definition 6.8
at some point x̄ ∈ S simplifies to

lim sup
x′→x̄, x′′→x̄, y→0

(
G′(x′)∗NK(G(x′)− y) +NC(x′′)

)
⊂ G′(x̄)∗NK(G(x̄)) +NC(x̄). (6.3)

In the light of Proposition 6.9 and Corollary 6.10, (6.3) serves as a constraint qualification guaranteeing M-
stationarity of x̄ under mild assumptions as soon as this point is a local minimizer of the associated problem
(Q). One may, thus, refer to (6.3) as the uniform constraint qualification.



26 A.Y. KRUGER AND P. MEHLITZ

Observations related to the ones from Remark 6.11 have been made in [11], Section 2.2 of [35], and Section 5.1
of [47] and underline that (6.3) is a comparatively weak constraint qualification whenever q ≡ 0. Exemplary, let
us mention that whenever X and Y are finite-dimensional the generalized Mangasarian–Fromovitz constraint
qualification

−G′(x̄)∗λ ∈ NC(x̄), λ ∈ NK(G(x̄)) =⇒ λ = 0 (6.4)

is sufficient for (6.3) to hold, but the uniform constraint qualification is often much weaker than (6.4) which
corresponds to metric regularity of Φ from Remark 6.1 at (x̄, (0, 0)), see Section 3.2 of [47] for related discussions.
Let us also mention that (6.4) is sufficient for metric subregularity of Φ at (x̄, (0, 0)) exploited in Corollary 3.19.

The following proposition provides a sufficient condition for validity of the uniform qualification condition in
case where X is finite-dimensional.

Proposition 6.12. Let X be finite-dimensional and x̄ ∈ S ∩ dom q. Suppose that the uniform constraint
qualification (6.3) is valid at x̄, and(

G′(x̄)∗NK(G(x̄)) +NC(x̄)
)
∩ (−∂∞q(x̄)) = {0}. (6.5)

Then the uniform qualification condition holds at x̄.

Proof. Let us fix

x∗ ∈ lim sup
x→x̄, x′→x̄, x′′→x̄,
y→0, q(x)→q(x̄)

(∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′)) .

Then we find sequences {xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and {x∗k}k∈N ⊂ X∗ such that xk → x̄,
x′k → x̄, x′′k → x̄, yk → ȳ, q(xk)→ q(x̄), and x∗k → x∗ as well as x∗k ∈ ∂q(xk) +G′(x′k)∗NK(G(x′k)−yk) +NC(x′′k)
for all k ∈ N. Thus, there are sequences {u∗k}k∈N, {v∗k}k∈N ⊂ X∗ satisfying x∗k = u∗k + v∗k, u∗k ∈ ∂q(xk), and
v∗k ∈ G′(x′k)∗NK(G(x′k)− yk) +NC(x′′k) for all k ∈ N.

Let us assume that {u∗k}k∈N is unbounded. Then, due to x∗k → x∗, {v∗k}k∈N is unbounded, too. For each
k ∈ N, we define ũ∗k := u∗k/(‖u∗k‖+ ‖v∗k‖) and ṽ∗k := v∗k/(‖u∗k‖+ ‖v∗k‖), i.e., the sequence {(ũ∗k, ṽ∗k)}k∈N belongs
to the unit sphere of X∗ × X∗. Without loss of generality, we may assume ũ∗k → ũ∗ and ṽ∗k → ṽ∗ for some
ũ∗, ṽ∗ ∈ X∗ since X is finite-dimensional. We note that ũ∗ and ṽ∗ cannot vanish at the same time. Taking the
limit in x∗k/(‖u∗k‖+ ‖v∗k‖) = ũ∗k + ṽ∗k, we obtain 0 = ũ∗+ ṽ∗. By definition of the singular limiting subdifferential,

we have ũ∗ ∈ ∂∞q(x̄) while

ṽ∗ ∈ lim sup
k→+∞

(
G′(x′k)∗NK(G(x′k)− yk) +NC(x′′k)

)
⊂ G′(x̄)∗NK(G(x̄)) +NC(x̄)

follows by the uniform constraint qualification (6.3). Thus, we find ũ∗ = ṽ∗ = 0 from condition (6.5). The latter,
however, contradicts (ũ∗, ṽ∗) 6= (0, 0).

From above, we now know that {u∗k}k∈N and {v∗k}k∈N are bounded. Without loss of generality, we may assume
u∗k → u∗ and v∗k → v∗ for some u∗, v∗ ∈ X∗. By definition of the limiting subdifferential we have u∗ ∈ ∂q(x̄),
and v∗ ∈ G′(x̄)∗NK(G(x̄)) +NC(x̄) is guaranteed by the uniform constraint qualification (6.3). Thus, we end
up with x∗ ∈ ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄) which completes the proof.

Proposition 6.12 shows that in case where X is finite-dimensional, validity of the uniform qualification
condition can be guaranteed in the presence of two conditions. The first one, represented by condition (6.3), is
a sequential constraint qualification which guarantees regularity of the constraints at the reference point. The
second one, given by condition (6.5), ensures in some sense that the challenging part of the objective function and
the constraints of (Q) are somewhat compatible at the reference point. A similar decomposition of qualification
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conditions has been used in [15, 28] in order to ensure M-stationarity of standard nonlinear problems in finite
dimensions with a composite objective function. In the latter papers, the authors referred to a condition of type
(6.5) as basic qualification, and this terminology can be traced back to the works of Mordukhovich, see e.g. [51].

Note that in order to transfer Proposition 6.12 to the infinite-dimensional setting, one would be in need
to postulate sequential compactness properties on q or the constraint data which are likely to fail in several
interesting function spaces, see [46] again.

6.2. Augmented Lagrangian methods for optimization problems with non-Lipschitzian
objective functions

We consider the optimization problem (Q) such that X is an Asplund space, Y is a Hilbert space with
Y ∼= Y ∗, and K is convex. Let us note that the assumption on Y can be relaxed by assuming the existence of
a Hilbert space H with H ∼= H∗ such that (Y,H, Y ∗) is a Gelfand triplet, see Section 7 of [11] or [12, 38] for
discussions. Furthermore, we will exploit the following assumption which is standing throughout this section.

Assumption 6.13. At least one of the following assumptions is valid.

(a) The space X is finite-dimensional.
(b) The function q is uniformly continuous.
(c) The functions f , q, and x 7→ dist2

K(G(x)) are weakly sequentially lower semicontinuous and C is weakly
sequentially closed. Furthermore, X is reflexive.

Throughout this subsection, we assume that C is a comparatively simple set, e.g., a box if X is equipped
with a (partial) order relation, while the constraints G(x) ∈ K are difficult and will be treated with the aid of
a multiplier-penalty approach. In this regard, for some penalty parameter θ > 0, we investigate the (partial)
augmented Lagrangian function Lθ : X × Y → R∞ given by

∀(x, λ) ∈ X × Y : Lθ(x, λ) := f(x) +
θ

2
dist2

K

(
G(x) +

λ

θ

)
+ q(x).

We would like to point the reader’s attention to the fact that the second summand in the definition of Lθ is
continuously differentiable since the squared distance to a convex set possesses this property. For the control of
the penalty parameter, we make use of the function Vθ : X × Y → R given by

∀(x, y) ∈ X × Y : Vθ(x, λ) := ‖G(x)− PK(G(x) + λ/θ)‖ .

The method of interest is now given as stated in Algorithm 1.
We would like to point the reader’s attention to the fact that Algorithm 1 is a so-called safeguarded augmented

Lagrangian method since the multiplier estimates uk are chosen from the bounded set B. In practice, one
typically chooses B as a (very large) box, and defines uk as the projection of λk onto B in (S.2). Note that
without safeguarding, one obtains the classical augmented Lagrangian method. However, it is well known that
the safeguarded version possesses superior global convergence properties, see [37]. An overview of augmented
Lagrangian methods in constrained optimization can be found in [9].

Let us comment on potential termination criteria for Algorithm 1. On the one hand, Algorithm 1 is designed
for the computation of M-stationary points of (Q) which, at the latest, will become clear in Corollary 6.16. Thus,
one may check approximate validity of these stationarity conditions in (S.1). However, if q or C is variationally
challenging, this might be a nontrivial task. On the other hand, at its core, Algorithm 1 is a penalty method,
so it is also reasonable to check approximate feasibility with respect to the constraints G(x) ∈ K in (S.1).

In [15], the authors suggest to solve (Q), where all involved spaces are instances of Rn while the constraints
G(x) ∈ K are replaced by smooth inequality and equality constraints, with the classical augmented Lagrangian
method. In case where q is not present and X as well as Y are Euclidean spaces, Algorithm 1 recovers the partial
augmented Lagrangian scheme studied in [35] where the authors focus on situations where C is nonconvex and of
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Algorithm 1 Safeguarded augmented Lagrangian method for (Q).

(S.0) Choose (x0, λ0) ∈ (dom q)× Y , θ0 > 0, γ > 1, τ ∈ (0, 1), and a nonempty, bounded set B ⊂ Y arbitrarily.
Set k := 0.

(S.1) If (xk, λk) satisfies a suitable termination criterion, then stop.
(S.2) Choose uk ∈ B and find an approximate solution xk+1 ∈ C ∩ dom q of

min{Lθk(x, uk) |x ∈ C}. (6.6)

(S.3) Set

λk+1 := θk [G(xk+1) + uk/θk − PK (G(xk+1) + uk/θk)] .

(S.4) If k = 0 or Vθk(xk+1, uk) ≤ τ Vθk−1
(xk, uk−1), then set θk+1 := θk. Otherwise, set θk+1 := γ θk.

(S.5) Go to (S.1).

challenging variational structure. We note that, technically, Algorithm 1 is also capable of handling this situation.
However, it might be difficult to solve the appearing subproblems (6.6) if both q and C are variationally complex.
Note that we did not specify in (S.2) how precisely the subproblems have to be solved. Exemplary, one could aim
to find stationary or globally ε-minimal points of the function Lθk(·, uk)C here. We comment on both situations
below.

Our theory from Section 4 can be used to show that Algorithm 1 computes approximately stationary points
of (Q) when the subproblems (6.6) are solved up to stationarity of Lθk(·, uk)C .

Theorem 6.14. Let {xk}k∈N be a sequence generated by Algorithm 1 such that xk+1 is a stationary point
of Lθk(·, uk)C for each k ∈ N. Assume that, along a subsequence (without relabeling), we have xk → x̄ and
q(xk)→ q(x̄) for some x̄ ∈ X which is feasible to (Q). Then x̄ is an approximately stationary point of (Q).

Proof. Observe that Assumption 6.13 guarantees that Lθk(·, uk) is lower semicontinuous relative to C near each
point from C ∩ dom q, see Corollaries 3.13 and 3.15. Since xk+1 is a stationary point of Lθk(·, uk)C , we can
apply Remark 2.5 and Theorem 4.5 in order to find x′k+1 ∈ B1/k(xk+1) and x′′k+1 ∈ C ∩ B1/k(xk+1) such that

|q(x′k+1)− q(xk+1)| < 1
k and

0 ∈ ∂Lθk(x′k+1, uk) +NC(x′′k+1) + 1
k B
∗

for each k ∈ N. From xk → x̄ and q(xk)→ q(x̄) we have x′k → x̄, x′′k → x̄, and q(x′k)→ q(x̄). Noting that f , G,
and, by convexity of K, the squared distance function dist2

K are continuously differentiable, we find

0 ∈ f ′(x′k+1) + θkG
′(x′k+1)∗

[
G(x′k+1) + uk/θk − PK

(
G(x′k+1) + uk/θk

)]
+ ∂q(x′k+1) +NC(x′′k+1) + 1

k B
∗ (6.7)

for each k ∈ N where we used the subdifferential sum rule from Corollary 1.12.2 of [41]. Let us set yk+1 :=
G(x′k+1)− PK(G(x′k+1) + uk/θk) for each k ∈ N. By definition of the projection and convexity of K, we find

θk(yk+1 + uk/θk) ∈ NK(PK(G(x′k+1) + uk/θk)) = NK(G(x′k+1)− yk+1),

so we can rewrite (6.7) by means of

0 ∈ f ′(x′k+1) + ∂q(x′k+1) +G′(x′k+1)∗NK(G(x′k+1)− yk+1) +NC(x′′k+1) + 1
k B
∗ (6.8)

for each k ∈ N.
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It remains to show yk+1 → 0. We distinguish two cases.
First, assume that {θk}k∈N remains bounded. By construction of Algorithm 1, this yields Vθk(xk+1, uk)→ 0

as k → +∞. Recalling that the projection PK is Lipschitz continuous with modulus 1 by convexity of K, we
have

‖yk+1‖ ≤ Vθk(xk+1, uk) +
∥∥G(x′k+1)−G(xk+1)

∥∥+
∥∥PK(G(x′k+1) + uk/θk)− PK(G(xk+1) + uk/θk)

∥∥
≤ Vθk(xk+1, uk) + 2

∥∥G(x′k+1)−G(xk+1)
∥∥

for each k ∈ N. Due to xk → x̄ and x′k → x̄ as well as continuity of G, this yields yk+1 → 0.
Finally, suppose that {θk}k∈N is unbounded. Since this sequence is monotonically increasing, we have θk →

+∞. By boundedness of {uk}k∈N, continuity of G as well as the projection PK , x′k → x̄, and feasibility of x̄ for
(Q), it holds

yk+1 = G(x′k+1)− PK(G(x′k+1) + uk/θk)→ G(x̄)− PK(G(x̄)) = 0,

and this completes the proof.

Let us mention that the assumption q(xk)→ q(x̄) is trivially satisfied as soon as q is continuous on its domain.
For other types of discontinuity, however, this does not follow by construction of the method and has to be
presumed. Let us note that this convergence is also implicitly used in the proof of the related result Theorem
3.1 in [15] but does not follow from the postulated assumptions, i.e., this assumption is missing there.

Note that demanding feasibility of accumulation points is a natural assumption when considering augmented
Lagrangian methods. This property naturally holds whenever the sequence {θk}k∈N remains bounded or if q is
bounded from below while the sequence {Lθk(xk+1, uk)}k∈N remains bounded. The latter assumption is typically
satisfied whenever globally εk-minimal points of Lθk(·, uk)C can be computed in order to approximately solve
the subproblems (6.6) in (S.2), where {εk}k∈N ⊂ [0,+∞) is a bounded sequence. Indeed, we have

∀x ∈ S : Lθk(xk+1, uk) ≤ Lθk(x, uk) + εk ≤ f(x) + ‖uk‖2 /(2θk) + q(x) + εk (6.9)

in this situation, and this yields the claim by boundedness of {uk}k∈N and monotonicity of {θk}k∈N. If {εk}k∈N
is a null sequence, we obtain an even stronger result.

Theorem 6.15. Let {xk}k∈N ⊂ X be a sequence generated by Algorithm 1 and let {εk}k∈N ⊂ [0,+∞) be a null
sequence such that xk+1 is a globally εk-minimal point of Lθk(·, uk)C for each k ∈ N. Then each accumulation
point x̄ ∈ X of {xk}k∈N is a global minimizer of (Q) and, along the associated subsequence, we find q(xk)→ q(x̄).

Proof. Without loss of generality, we assume xk → x̄. By closedness of C, we have x̄ ∈ C. The estimate (6.9)
yields

f(xk+1) + q(xk+1) +
θk
2

dist2
K

(
G(xk+1) +

uk
θk

)
− ‖uk‖

2

2θk
≤ f(x) + q(x) + εk (6.10)

for each x ∈ S. We show the statement of the theorem by distinguishing two cases.
In case where {θk}k∈N remains bounded, we find distK(G(xk+1)) ≤ Vθk(xk+1, uk) → 0 from (S.4), so the

continuity of the distance function distK and G yields G(x̄) ∈ K, i.e., x̄ is feasible to (Q). Using the triangle
inequality, we also obtain

distK(G(xk+1) + uk/θk) ≤ distK(G(xk+1)) + ‖uk‖ /θk ≤ Vθk(xk+1, uk) + ‖uk‖ /θk
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for each k ∈ N. Squaring on both sides, exploiting the boundedness of {uk}k∈N and Vθk(xk+1, uk)→ 0 yields

lim sup
k→+∞

(
dist2

K (G(xk+1) + uk/θk)− (‖uk‖ /θk)2
)
≤ 0.

The boundedness of {θk}k∈N and (6.10) thus show lim supk→+∞(f(xk+1) + q(xk+1)) ≤ f(x) + q(x) for each
x ∈ S. Exploiting the lower semicontinuity of q, this leads to f(x̄) + q(x̄) ≤ f(x) + q(x), i.e., x̄ is a global
minimizer of (Q). On the other hand, we have

f(x̄) + q(x̄) ≤ lim inf
k→+∞

(f(xk+1) + q(xk+1)) ≤ lim sup
k→+∞

(f(xk+1) + q(xk+1)) ≤ f(x̄) + q(x̄)

from the particular choice x := x̄, so the continuity of f yields q(xk)→ q(x̄) as claimed.
Now, let us assume that {θk}k∈N is not bounded. Then we have θk → +∞ from (S.4). By choice of xk+1,

we have Lθk(xk+1, uk) ≤ Lθk(x, uk) + εk for all x ∈ C and each k ∈ N, so the definition of the augmented
Lagrangian function yields

f(xk+1) + q(xk+1) +
θk
2

dist2
K

(
G(xk+1) +

uk
θk

)
≤ f(x) + q(x) +

θk
2

dist2
K

(
G(x) +

uk
θk

)
+ εk

for each x ∈ C. By continuity of f and lower semicontinuity of q, {f(xk+1) + q(xk+1)}k∈N is bounded from
below. Thus, dividing the above estimate by θk/2 and taking the limit inferior, we find

dist2
K(G(x̄)) = lim inf

k→+∞
dist2

K (G(xk+1) + uk/θk) ≤ lim inf
k→+∞

dist2
K (G(x) + uk/θk) = dist2

K(G(x))

for each x ∈ C from θk → +∞ and continuity of distK and G. Hence, x̄ is a global minimizer of dist2
K ◦G over C.

Since S is assumed to be nonempty, we infer dist2
K(G(x̄)) = 0, i.e., x̄ is feasible to (Q). Exploiting boundedness

of {uk}k∈N, nonnegativity of the distance function, and θk → +∞, we now obtain lim supk→+∞(f(xk+1) +
q(xk+1)) ≤ f(x) + q(x) for each x ∈ S from (6.10). Proceeding as in the first case now yields the claim.

It remains to clarify how the subproblems (6.6) can be solved in practice. If the non-Lipschitzness of q is,
in some sense, structured while C is of simple form, it should be reasonable to solve (6.6) with the aid of a
nonmonotone proximal gradient method, see Section 3.1 of [15]. On the other hand, in situations where q is
not present while C possesses a variational structure which allows for the efficient computation of projections,
a nonmonotone spectral gradient method might be used to solve (6.6), see Section 3 of [35]. Finally, it might
be even possible to solve (6.6) up to global optimality in analytic way in some practically relevant applications
where q is a standard sparsity-promoting term and the remaining data is simple enough.

Coming back to the assertion of Theorem 6.14, the following is now clear from Corollary 6.10.

Corollary 6.16. Let {xk}k∈N be a sequence generated by Algorithm 1 such that xk+1 is a stationary point
of Lθk(·, uk)C for each k ∈ N. Assume that, along a subsequence (without relabeling), we have xk → x̄ and
q(xk)→ q(x̄) for some x̄ ∈ X which is feasible to (Q) and satisfies the uniform qualification condition. Then x̄
is M-stationary.

Note that in the light of Proposition 6.12, Corollary 6.16 drastically generalizes and improves Theorem 3.1
of [15] which shows global convergence of a related augmented Lagrangian method to certain stationary points
under validity of a basic qualification, see condition (6.5), and the relaxed constant positive linear dependence
constraint qualification which is more restrictive than condition (6.3) in the investigated setting, see Lemma 2.7
of [35] as well. Let us mention that such a result has been foreshadowed in Section 5.4 of [35]. We would like
to point the reader’s attention to the fact that working with strong accumulation points in the context of
Theorems 6.14 and 6.15 and Corollary 6.16 is indispensable as long as q or the sets K and C are not convex
since the limiting variational tools rely on strong convergence in the primal space. In the absence of q and if K
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and C are convex, some convergence results based on weak accumulation points are available, see e.g. Section 7
of [11] and [12, 38]. Clearly, in finite dimensions, both types of convergence are equivalent and the consideration
of strong accumulation points is not restrictive at all.

6.3. Sparsity-promotion in optimal control

In this section, we apply the theory derived earlier to an optimal control problem with a sparsity-promoting
term in the objective function. As it is common to denote control functions by u in the context of optimal
control, we will use the same notation here for the decision variable for notational convenience.

For some bounded domain D ⊂ Rd and some p ∈ (0, 1), we define a function q : L2(D)→ R by means of

∀u ∈ L2(D) : q(u) :=

∫
D

|u(ω)|p dω. (6.11)

Above, L2(D) denotes the standard Lebesgue space of (equivalence classes of) measurable functions whose square
is integrable and is equipped with the usual norm. In optimal control, the function q is used as an additive
term in the objective function in order to promote sparsity of underlying control functions, see [34, 52, 59]. A
reason for this behavior is that the integrand t 7→ |t|p possesses a unique global minimizer and infinite growth
at the origin. In [50], the authors explore the variational properties of the functional q. It has been shown to
be uniformly continuous in Lemma 2.3 of [50]. Furthermore, in Theorem 4.6 of [50], the following formula has
been proven for each ū ∈ L2(D):

∂q(ū) = ∂q(ū) =
{
η ∈ L2(D) | η = p |ū|p−2

ū a.e. on {ū 6= 0}
}
. (6.12)

Let us emphasize that this means that the Fréchet and limiting subdifferential actually coincide and can be
empty if the reference point is a function which tends to zero too fast somewhere on its domain. This underlines
the sparsity-promoting properties of q.

Now, for a continuously differentiable function f : L2(D)→ R and functions ua, ub ∈ L2(D) satisfying ua <
0 < ub almost everywhere on D, we consider the optimization problem

min{f(u) + q(u) |u ∈ C} (OC)

where C ⊂ L2(D) is given by the box

C := {u ∈ L2(D) |ua ≤ u ≤ ub a.e. on D}.

For later use, let us mention that, for each u ∈ C, the (Fréchet) normal cone to C at u is given by the pointwise
representation

NC(u) =

{
η ∈ L2(D)

∣∣∣∣∣ η ≤ 0 a.e. on {u < ub}
η ≥ 0 a.e. on {ua < u}

}
. (6.13)

Typically, in optimal control, f is a function of type

∀u ∈ L2(D) : f(u) := 1
2 ‖S(u)− yd‖2 + σ

2 ‖u‖
2

(6.14)

where S : L2(D)→ H is the continuously differentiable control-to-observation operator associated with a given
system of differential equations, H is a Hilbert space, yd ∈ H is the desired state, and σ ≥ 0 is a regularization
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parameter. Clearly, by means of the chain rule, f is continuously differentiable with derivative given by

∀u ∈ L2(D) : f ′(u) = S′(u)∗[S(u)− yd] + σu.

The presence of q in the objective functional of (OC) enforces sparsity of its solutions, i.e., the support of optimal
controls is likely to be small. It already has been mentioned in [34, 52] that one generally cannot show existence
of solutions to optimization problems of type (OC). Nevertheless, the practical need for sparse controls makes
it attractive to consider the model and to derive necessary optimality conditions in order to identify reasonable
stationary points.

In the subsequent lemma, we show that the feasible points of (OC) satisfy the uniform qualification condition
stated in Definition 6.8.

Lemma 6.17. Let ū ∈ L2(D) be a feasible point of (OC). Then the uniform qualification condition holds at ū.

Proof. Recalling that q is continuous while C is convex, the uniform qualification condition takes the simplified
form

lim sup
u→ū, u′→ū

(
∂q(u) +NC(u′)

)
⊂ ∂q(ū) +NC(ū).

Let us fix some point η ∈ lim supu→ū, u′→ū
(
∂q(u)+NC(u′)

)
. Then we find sequences {uk}k∈N, {u′k}k∈N, {ηk}k∈N ⊂

L2(D) such that uk → ū, u′k → ū, ηk → η, as well as ηk ∈ ∂q(uk) + NC(u′k) for all k ∈ N. Particularly,
there are sequences {ξk}k∈N, {µk}k∈N ⊂ L2(D) such that ξk ∈ ∂q(uk), µk ∈ NC(u′k), and ηk = ξk + µk for

all k ∈ N. From (6.12) we find ξk = p |uk|p−2
uk almost everywhere on {uk 6= 0} for each k ∈ N. Furthermore,

we have µk ≤ 0 almost everywhere on {u′k = ua}, µk ≥ 0 almost everywhere on {u′k = ub}, and µk = 0 almost
everywhere on {ua < u′k < ub} for each k ∈ N from (6.13). Along a subsequence (without relabeling) we can
ensure the convergences uk(ω) → ū(ω), u′k(ω) → ū(ω), and ηk(ω) → η(ω) for almost every ω ∈ D. Thus, for
almost every ω ∈ {ū = ua}, we can guarantee uk(ω) < 0 and u′k(ω) ∈ [ua(ω), 0), i.e., ηk(ω) = ξk(ω) + µk(ω) ≤
p|uk(ω)|p−2uk(ω) for all large enough k ∈ N, so, taking the limit yields η(ω) ≤ p |ū(ω)|p−2

ū(ω). Similarly, we find

η(ω) ≥ p |ū(ω)|p−2
ū(ω) for almost every ω ∈ {ū = ub}. Finally, for almost every ω ∈ {ū 6= 0} ∩ {ua < ū < ub},

we have uk(ω) 6= 0 and ua(ω) < u′k(ω) < ub(ω), i.e., ηk(ω) = p |uk(ω)|p−2
uk(ω) for large enough k ∈ N, so

taking the limit, we have η(ω) = p |ū(ω)|p−2
ū(ω). Again, from (6.12) and (6.13), we have η ∈ ∂q(ū) +NC(ū),

and this yields the claim.

Recalling that q is uniformly continuous, the subsequent result now directly follows from Corollary 6.10, the
above lemma, and formulas (6.12) as well as (6.13).

Theorem 6.18. Let ū ∈ L2(D) be a local minimizer of (OC). Then there exists a function η ∈ L2(D) such
that

f ′(ū) + η = 0, (6.15a)

η = p|ū|p−2ū a.e. on {ū 6= 0} ∩ {ua < ū < ub}, (6.15b)

η ≤ p |ua|p−2
ua a.e. on {ū = ua}, (6.15c)

η ≥ p |ub|p−2
ub a.e. on {ū = ub}. (6.15d)

We note that our approach to obtain necessary optimality conditions for (OC) is much different from the one
used in [34, 52] where Pontryagin’s maximum principle has been used to derive pointwise conditions character-
izing local minimizers under more restrictive assumptions than we needed to proceed. On the one hand, this led
to optimality conditions which also provide information on the subset of D where the locally optimal control is
zero, and one can easily see that this is not the case in Theorem 6.18. On the other hand, a detailed inspection of



OPTIMALITY CONDITIONS, APPROXIMATE STATIONARITY, AND APPLICATIONS 33

(6.15) makes clear that our necessary optimality conditions provide helpful information regarding the structure
of the optimal control as the multiplier η possesses L2-regularity while (6.15b) causes η to possess singularities
as the optimal control tends to zero somewhere on the domain. Thus, this condition clearly promotes sparse
controls which either are zero, tend to zero (if at all) slowly enough, or are bounded away from it. Note that
this differs from the conditions derived in [34, 52] which are multiplier-free.

7. Concluding remarks

In this paper, we established a theory on approximate stationarity conditions for optimization problems with
potentially non-Lipschitzian objective functions in a very general setting. In contrast to the finite-dimensional
situation, where approximate stationarity has been shown to serve as a necessary optimality condition for
local optimality without any additional assumptions, some additional semicontinuity properties need to be
present in the infinite-dimensional context. We exploited our findings in order to re-address the classical topic
of set extremality and were in position to derive a novel version of the popular extremal principle. This may
serve as a starting point for further research which compares the classical as well as the new version of the
extremal principle in a more detailed way. Moreover, we used our results in order to derive an approximate
notion of stationarity as well as an associated qualification condition related to M-stationarity for optimization
problems with a composite objective function and geometric constraints in the Banach space setting. This
theory then has been applied to study the convergence properties of an associated augmented Lagrangian
method for the numerical solution of such problems. Furthermore, we demonstrated how these findings can
be used to derive necessary optimality conditions for optimal control problems with control constraints and a
sparsity-promoting term in the objective function. Some future research may clarify whether our approximate
stationarity conditions can be used to find necessary optimality conditions for optimization problems in function
spaces where nonconvexity or nonsmoothness pop up in a different context. Exemplary, it would be interesting
to study situations where the solution operator S appearing in (6.14) is nonsmooth, see e.g. [16, 32, 56], where
the set of feasible controls is nonconvex, see e.g. [17–19, 49], or where the function q is a term promoting sharp
edges in continuous image denoising or deconvolution, see e.g. Section 6 of [14].
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[45] M. Maréchal, Metric subregularity in generalized equations. J. Optim. Theory Appl. 176 (2018) 541–558 .

https://arxiv.org/abs/2105.08317


OPTIMALITY CONDITIONS, APPROXIMATE STATIONARITY, AND APPLICATIONS 35

[46] P. Mehlitz, On the sequential normal compactness condition and its restrictiveness in selected function spaces. Set-Valued
Variat. Anal. 27 (2019) 763–782.

[47] P. Mehlitz, Asymptotic stationarity and regularity for nonsmooth optimization problems. J. Nonsmooth Anal. Optim. 1 (2020)
6575.

[48] P. Mehlitz, Asymptotic regularity for Lipschitzian nonlinear optimization problems with applications to complementarity-
constrained and bilevel programming. Optimization (2022) 1–44.

[49] P. Mehlitz and G. Wachsmuth, The limiting normal cone to pointwise defined sets in Lebesgue spaces. Set-Valued Variat.
Anal. 26 (2018) 449–467.

[50] P. Mehlitz and G. Wachsmuth, Subdifferentiation of nonconvex sparsity-promoting functionals on Lebesgue spaces. SIAM J.
Control Optim. (2022) 1–22.

[51] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, Part I: Basic Theory, Part II: Applications. Springer,
Berlin (2006).

[52] C. Natemeyer and D. Wachsmuth, A proximal gradient method for control problems with nonsmooth and nonconvex control
cost. Comput. Optim. Appl. 80 (2021) 639–677.

[53] J.-P. Penot, Calculus Without Derivatives. Springer, New York (2013).

[54] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1993).

[55] A. Ramos, Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications
and algorithmic consequences. Optim. Methods Softw. 36 (2021) 45–81.

[56] A.-T. Rauls and G. Wachsmuth, Generalized derivatives for the solution operator of the obstacle problem. Set-Valued Variat.
Anal. 28 (2020) 259–285.

[57] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer, Berlin (1998).
[58] L. Thibault, Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM J. Control Optim. 35 (1997)

1434–1444.
[59] D. Wachsmuth, Iterative hard-thresholding applied to optimal control problems with L0(Ω) control cost. SIAM J. Control

Optim. 57 (2019) 854–879.
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