43,742 research outputs found

    Differentiable Kernels in Generalized Matrix Learning Vector Quantization

    Get PDF
    In the present paper we investigate the application of differentiable kernel for generalized matrix learning vector quantization as an alternative kernel-based classifier, which additionally provides classification dependent data visualization. We show that the concept of differentiable kernels allows a prototype description in the data space but equipped with the kernel metric. Moreover, using the visualization properties of the original matrix learning vector quantization we are able to optimize the class visualization by inherent visualization mapping learning also in this new kernel-metric data space

    Rejection and online learning with prototype-based classifiers in adaptive metrical spaces

    Get PDF
    Fischer L. Rejection and online learning with prototype-based classifiers in adaptive metrical spaces. Bielefeld: Universität Bielefeld; 2016.The rising amount of digital data, which is available in almost every domain, causes the need for intelligent, automated data processing. Classification models constitute particularly popular techniques from the machine learning domain with applications ranging from fraud detection up to advanced image classification tasks. Within this thesis, we will focus on so-called prototype-based classifiers as one prominent family of classifiers, since they offer a simple classification scheme, interpretability of the model in terms of prototypes, and good generalisation performance. We will face a few crucial questions which arise whenever such classifiers are used in real-life scenarios which require robustness and reliability of classification and the ability to deal with complex and possibly streaming data sets. Particularly, we will address the following problems: - Deterministic prototype-based classifiers deliver a class label, but no confidence of the classification. The latter is particularly relevant whenever the costs of an error are higher than the costs to reject an example, e.g. in a safety critical system. We investigate ways to enhance prototype-based classifiers by a certainty measure which can efficiently be computed based on the given classifier only and which can be used to reject an unclear classification. - For an efficient rejection, the choice of a suitable threshold is crucial. We investigate in which situations the performance of local rejection can surpass the choice of only a global one, and we propose efficient schemes how to optimally compute local thresholds on a given training set. - For complex data and lifelong learning, the required classifier complexity can be unknown a priori. We propose an efficient, incremental scheme which adjusts the model complexity of a prototype-based classifier based on the certainty of the classification. Thereby, we put particular emphasis on the question how to adjust prototype locations and metric parameters, and how to insert and/or delete prototypes in an efficient way. - As an alternative to the previous solution, we investigate a hybrid architecture which combines an offline classifier with an online classifier based on their certainty values, thus directly addressing the stability/plasticity dilemma. While this is straightforward for classical prototype-based schemes, it poses some challenges as soon as metric learning is integrated into the scheme due to the different inherent data representations. - Finally, we investigate the performance of the proposed hybrid prototype-based classifier within a realistic visual road-terrain-detection scenario

    Efficient Adaptation of Structure Metrics in Prototype-Based Classification

    Get PDF
    Mokbel B, Paaßen B, Hammer B. Efficient Adaptation of Structure Metrics in Prototype-Based Classification. In: Wermter S, Weber C, Duch W, et al., eds. Artificial Neural Networks and Machine Learning - ICANN 2014 - 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014. Proceedings. Lecture Notes in Computer Science. Vol 8681. Springer; 2014: 571-578.More complex data formats and dedicated structure metrics have spurred the development of intuitive machine learning techniques which directly deal with dissimilarity data, such as relational learning vector quantization (RLVQ). The adjustment of metric parameters like relevance weights for basic structural elements constitutes a crucial issue therein, and first methods to automatically learn metric parameters from given data were proposed recently. In this contribution, we investigate a robust learning scheme to adapt metric parameters such as the scoring matrix in sequence alignment in conjunction with prototype learning, and we investigate the suitability of efficient approximations thereof

    Learning Models for Semantic Classification of Insufficient Plantar Pressure Images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    Prototypicality effects in global semantic description of objects

    Full text link
    In this paper, we introduce a novel approach for semantic description of object features based on the prototypicality effects of the Prototype Theory. Our prototype-based description model encodes and stores the semantic meaning of an object, while describing its features using the semantic prototype computed by CNN-classifications models. Our method uses semantic prototypes to create discriminative descriptor signatures that describe an object highlighting its most distinctive features within the category. Our experiments show that: i) our descriptor preserves the semantic information used by the CNN-models in classification tasks; ii) our distance metric can be used as the object's typicality score; iii) our descriptor signatures are semantically interpretable and enables the simulation of the prototypical organization of objects within a category.Comment: Paper accepted in IEEE Winter Conference on Applications of Computer Vision 2019 (WACV2019). Content: 10 pages (8 + 2 reference) with 7 figure

    Local feature weighting in nearest prototype classification

    Get PDF
    The distance metric is the corner stone of nearest neighbor (NN)-based methods, and therefore, of nearest prototype (NP) algorithms. That is because they classify depending on the similarity of the data. When the data is characterized by a set of features which may contribute to the classification task in different levels, feature weighting or selection is required, sometimes in a local sense. However, local weighting is typically restricted to NN approaches. In this paper, we introduce local feature weighting (LFW) in NP classification. LFW provides each prototype its own weight vector, opposite to typical global weighting methods found in the NP literature, where all the prototypes share the same one. Providing each prototype its own weight vector has a novel effect in the borders of the Voronoi regions generated: They become nonlinear. We have integrated LFW with a previously developed evolutionary nearest prototype classifier (ENPC). The experiments performed both in artificial and real data sets demonstrate that the resulting algorithm that we call LFW in nearest prototype classification (LFW-NPC) avoids overfitting on training data in domains where the features may have different contribution to the classification task in different areas of the feature space. This generalization capability is also reflected in automatically obtaining an accurate and reduced set of prototypes.Publicad

    Graph Few-shot Learning via Knowledge Transfer

    Full text link
    Towards the challenging problem of semi-supervised node classification, there have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused great interest recently, which update the representation of each node by aggregating information of its neighbors. However, most GNNs have shallow layers with a limited receptive field and may not achieve satisfactory performance especially when the number of labeled nodes is quite small. To address this challenge, we innovatively propose a graph few-shot learning (GFL) algorithm that incorporates prior knowledge learned from auxiliary graphs to improve classification accuracy on the target graph. Specifically, a transferable metric space characterized by a node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and the target, facilitating the transfer of structural knowledge. Extensive experiments and ablation studies on four real-world graph datasets demonstrate the effectiveness of our proposed model.Comment: Full paper (with Appendix) of AAAI 202
    corecore