5 research outputs found

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    Methods for estimating the computational power and generalization capability of neural microcircuits

    No full text
    What makes a neural microcircuit computationally powerful? Or more precisely, which measurable quantities could explain why one microcircuit C is better suited for a particular family of computational tasks than another microcircuit C ′ ? We propose in this article quantitative measures for evaluating the computational power and generalization capability of a neural microcircuit, and apply them to generic neural microcircuit models drawn from different distributions. We validate the proposed measures by comparing their prediction with direct evaluations of the computational performance of these microcircuit models. This procedure is applied first to microcircuit models that differ with regard to the spatial range of synaptic connections and with regard to the scale of synaptic efficacies in the circuit, and then to microcircuit models that differ with regard to the level of background input currents and the level of noise on the membrane potential of neurons. In this case the proposed method allows us to quantify differences in the computational power and generalization capability of circuits in different dynamic regimes (UP- and DOWN-states) that have been demonstrated through intracellular recordings in vivo.

    Neuronal oscillations, information dynamics, and behaviour: an evolutionary robotics study

    Get PDF
    Oscillatory neural activity is closely related to cognition and behaviour, with synchronisation mechanisms playing a key role in the integration and functional organization of different cortical areas. Nevertheless, its informational content and relationship with behaviour - and hence cognition - are still to be fully understood. This thesis is concerned with better understanding the role of neuronal oscillations and information dynamics towards the generation of embodied cognitive behaviours and with investigating the efficacy of such systems as practical robot controllers. To this end, we develop a novel model based on the Kuramoto model of coupled phase oscillators and perform three minimally cognitive evolutionary robotics experiments. The analyses focus both on a behavioural level description, investigating the robot’s trajectories, and on a mechanism level description, exploring the variables’ dynamics and the information transfer properties within and between the agent’s body and the environment. The first experiment demonstrates that in an active categorical perception task under normal and inverted vision, networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally, and to adapt to different behavioural conditions. The second experiment relates assembly constitution and phase reorganisation dynamics to performance in supervised and unsupervised learning tasks. We demonstrate that assembly dynamics facilitate the evolutionary process, can account for varying degrees of stimuli modulation of the sensorimotor interactions, and can contribute to solving different tasks leaving aside other plasticity mechanisms. The third experiment explores an associative learning task considering a more realistic connectivity pattern between neurons. We demonstrate that networks with travelling waves as a default solution perform poorly compared to networks that are normally synchronised in the absence of stimuli. Overall, this thesis shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, produce an asymmetric flow of information and can generate minimally cognitive embodied behaviours

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors
    corecore