408 research outputs found

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Simulation of Chua's Circuit by Means of Interval Analysis

    Full text link
    The Chua's circuit is a paradigm for nonlinear scientific studies. It is usually simulated by means of numerical methods under IEEE 754-2008 standard. Although the error propagation problem is well known, little attention has been given to the relationship between this error and inequalities presented in Chua's circuit model. Taking the average of round mode towards ++\infty and -\infty, we showed a qualitative change on the dynamics of Chua's circuit.Comment: 6th International Conference on Nonlinear Science and Complexity - S\~ao Jos\'e dos Campos, 2016, p. 1-

    Error control in simplification before generation algorithms for symbolic analysis of large analogue circuits

    Get PDF
    Circuit reduction is a fundamental first step in addressing the symbolic analysis of large analogue circuits. A new algorithm for simplification before generation is presented which is very efficient in terms of speed and the amount of circuit reduction, and solves the accuracy problems of previously reported approaches

    Non-constructive interval simulation of dynamic systems

    Get PDF
    Publisher PD

    Symbolic analysis of large analog integrated circuits by approximation during expression generation

    Get PDF
    A novel algorithm is presented that generates approximate symbolic expressions for small-signal characteristics of large analog integrated circuits. The method is based upon the approximation of an expression while it is being computed. The CPU time and memory requirements are reduced drastically with regard to previous approaches, as only those terms are calculated which will remain in the final expression. As a consequence, the maximum circuit size amenable to symbolic analysis has largely increased. The simplification procedure explicitly takes into account variation ranges of the symbolic parameters to avoid inaccuracies of conventional approaches which use a single value. The new approach is also able to take into account mismatches between the symbolic parameters

    Interval-valued contractive fuzzy negations

    Get PDF
    In this work we consider the concept of contractive interval-valued fuzzy negation, as a negation such that it does not increase the length or amplitude of an interval. We relate this to the concept of Lipschitz function. In particular, we prove that the only strict (strong) contractive interval-valued fuzzy negation is the one generated from the standard (Zadeh's) negation
    corecore