7 research outputs found

    Methods For Creating XSEDE Compatible Clusters

    Get PDF
    The Extreme Science and Engineering Discovery Environment has created a suite of software that is collectively known as the basic XSEDE-compatible cluster build. It has been distributed as a Rocks roll for some time. It is now available as individual RPM packages, so that it can be downloaded and installed in portions as appropriate on existing and working clusters. In this paper, we explain the concept of the XSEDE-compatible cluster and explain how to install individual components as RPMs through use of Puppet and the XSEDE compatible cluster YUM repository.This document was developed with support from National Science Foundation (NSF) grant OCI-1053575. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF

    Cyberinfrastructure resources enabling creation of the loblolly pine reference transcriptome

    Get PDF
    This paper was presented at XSEDE 15 conference.Today's genomics technologies generate more sequence data than ever before possible, and at substantially lower costs, serving researchers across biological disciplines in transformative ways. Building transcriptome assemblies from RNA sequencing reads is one application of next-generation sequencing (NGS) that has held a central role in biological discovery in both model and non- model organisms, with and without whole genome sequence references. A major limitation in effective building of transcriptome references is no longer the sequencing data generation itself, but the computing infrastructure and expertise needed to assemble, analyze and manage the data. Here we describe a currently available resource dedicated to achieving such goals, and its use for extensive RNA assembly of up to 1.3 billion reads representing the massive transcriptome of loblolly pine, using four major assembly software installations. The Mason cluster, an XSEDE second tier resource at Indiana University, provides the necessary fast CPU cycles, large memory, and high I/O throughput for conducting large-scale genomics research. The National Center for Genome Analysis Support, or NCGAS, provides technical support in using HPC systems, bioinformatic support for determining the appropriate method to analyze a given dataset, and practical assistance in running computations. We demonstrate that a sufficient supercomputing resource and good workflow design are elements that are essential to large eukaryotic genomics and transcriptomics projects such as the complex transcriptome of loblolly pine, gene expression data that inform annotation and functional interpretation of the largest genome sequence reference to date.This work was supported in part by USDA NIFA grant 2011- 67009-30030, PineRefSeq, led by the University of California, Davis, and NCGAS funded by NSF under award No. 1062432

    A Review of the Literature on Configuration Management Tools

    Get PDF
    Configuration management tools help administrators in defining and automating system configurations. With cloud computing, host numbers are likely to grow. IaaS (infrastructure as a service) offerings with pay-per-use pricing models make fast and effective deployment of applications necessary. Configuration management tools address both challenges. In this paper, the existing research on this topic is reviewed comprehensively. Readers are provided with a descriptive analysis of the published literature as well as with an analysis of the content of the respective research works. The paper serves as an overview for researchers who are new to the topic. Furthermore, it serves to identify work related to an intended research field and identifies research gaps. Practitioners are provided with a means to identify solutions to their organizational problems

    Jetstream: A self-provisoned, scalable science and engineering cloud environment

    Get PDF
    The paper describes the motivation behind Jetstream, its functions, hardware configuration, software environment, user interface, design, use cases, relationships with other projects such as Wrangler and iPlant, and challenges in implementation.Funded by the National Science Foundation Award #ACI - 144560

    XCBC and XNIT - tools for cluster implementation and management in research and training

    Get PDF
    The Extreme Science and Engineering Discovery Environment has created a suite of software designed to facilitate the local management of computer clusters for scientific research and integration of such clusters with the US open research national cyberinfrastructure. This suite of software is distributed in two ways. One distribution is called the XSEDE-compatible basic cluster (XCBC), a Rocks Roll that does an “all at once, from scratch” installation of core components. The other distribution is called the XSEDE National Integration Toolkit (XNIT), so that specific tools can be downloaded and installed in portions as appropriate on existing clusters. In this paper, we describe the software included in XCBC and XNIT, and examine the use of XCBC installed on the LittleFe cluster design created by the Earlham College Cluster Computing Group as a teaching tool to show the deployment of XCBC from Rocks. In addition, the demonstration of the commercial Limulus HPC200 Deskside Cluster solution is shown as a viable, off-the-shelf cluster that can be adapted to become an XSEDE-like cluster through the use of the XNIT repository. We demonstrate that both approaches to cluster management – use of SCBC to build clusters from scratch and use of XNIT to expand capabilities of existing clusters – aid cluster administrators in administering clusters that are valuable locally and facilitate integration and interoperability of campus clusters with national cyberinfrastructure. We also demonstrate that very economical clusters can be useful tools in education and research.This document was developed with support from National Science Foundation (NSF) grant OCI-1053575. The LittleFe project has been funded in part by a grant from Intel, Inc. to Charlie Peck as well as NSF grants 1258604 and ACI-1347089. This research has also been supported in part by the Indiana University Pervasive Technology Institute, which was established with a major grant from the Lilly Endowment, Inc

    Workshop Report: Campus Bridging: Reducing Obstacles on the Path to Big Answers 2015

    Get PDF
    For the researcher whose experiments require large-scale cyberinfrastructure, there exists significant challenges to successful completion. These challenges are broad and go far beyond the simple issue that there are not enough large-scale resources available; these solvable issues range from a lack of documentation written for a non-technical audience to a need for greater consistency with regard to system configuration and consistent software configuration and availability on the large-scale resources at national tier supercomputing centers, with a number of other challenges existing alongside the ones mentioned here. Campus Bridging is a relatively young discipline that aims to mitigate these issues for the academic end-user, for whom the entire process can feel like a path comprised entirely of obstacles. The solutions to these problems must by necessity include multiple approaches, with focus not only on the end user but on the system administrators responsible for supporting these resources as well as the systems themselves. These system resources include not only those at the supercomputing centers but also those that exist at the campus or departmental level and even on the personal computing devices the researcher uses to complete his or her work. This workshop report compiles the results of a half-day workshop, held in conjunction with IEEE Cluster 2015 in Chicago, IL.NSF XSED
    corecore