28,149 research outputs found

    Methods of yeast genome editing

    Get PDF
    Yeasts are a convenient model eukaryote used for genome studies and genome editing. Saccharomyces cerevisiae is the species most widely employed in biotechnology, since it is easily cultivated in bioreactors and is absolutely safe. The last decade saw a significant development of methods of yeast genetic engineering and the creation of novel instruments adapted from other fields, which allowed one to significantly accelerate the construction of new strains. The most prominent examples are the proteins used for directed DNA editing. For a long time, yeast genome engineering was based on the yeasts’ system of homologous recombination. It was sufficient for several decades before the development of high­throughput methods. Many high­throughput methods were developed in the second decade of the XXI century, including those used in genomics, transcriptomics, proteomics, metabolomics, interactomics, etc. Modern bioinformatic databases now allow one to rapidly process the increasing flow of information and model cellular processes. As a result, the rate of analysis and prediction of targets for genome editing is currently higher than the rate of genome editing, which led to the development of new methods of genetic engineering. This process was particularly pronounced for microorganisms. Modern tasks require tens, hundreds, sometimes even thousands of genome modifications, which made researchers to look for new techniques. As a result, the instruments used for more complex objects, such as animals, plants, and cell lines, were adapted for yeasts. Modern methods for yeast genome editing allow introducing several modifications into the genome in a single step. In this study, we review the methods of directed genome editing and their applications and perspectives for yeasts

    ACtivE:Assembly and CRISPR-targeted in vivo editing for yeast genome engineering using minimum reagents and time

    Get PDF
    [Image: see text] Thanks to its sophistication, the CRISPR/Cas system has been a widely used yeast genome editing method. However, CRISPR methods generally rely on preassembled DNAs and extra cloning steps to deliver gRNA, Cas protein, and donor DNA. These laborious steps might hinder its usefulness. Here, we propose an alternative method, Assembly and CRISPR-targeted in vivo Editing (ACtivE), that only relies on in vivo assembly of linear DNA fragments for plasmid and donor DNA construction. Thus, depending on the user’s need, these parts can be easily selected and combined from a repository, serving as a toolkit for rapid genome editing without any expensive reagent. The toolkit contains verified linear DNA fragments, which are easy to store, share, and transport at room temperature, drastically reducing expensive shipping costs and assembly time. After optimizing this technique, eight loci proximal to autonomously replicating sequences (ARS) in the yeast genome were also characterized in terms of integration and gene expression efficiencies and the impacts of the disruptions of these regions on cell fitness. The flexibility and multiplexing capacity of the ACtivE were shown by constructing a β-carotene pathway. In only a few days, >80% integration efficiency for single gene integration and >50% integration efficiency for triplex integration were achieved on Saccharomyces cerevisiae BY4741 from scratch without using in vitro DNA assembly methods, restriction enzymes, or extra cloning steps. This study presents a standardizable method to be readily employed to accelerate yeast genome engineering and provides well-defined genomic location alternatives for yeast synthetic biology and metabolic engineering purposes

    Selection of chromosomal DNA libraries using a multiplex CRISPR system.

    Get PDF
    The directed evolution of biomolecules to improve or change their activity is central to many engineering and synthetic biology efforts. However, selecting improved variants from gene libraries in living cells requires plasmid expression systems that suffer from variable copy number effects, or the use of complex marker-dependent chromosomal integration strategies. We developed quantitative gene assembly and DNA library insertion into the Saccharomyces cerevisiae genome by optimizing an efficient single-step and marker-free genome editing system using CRISPR-Cas9. With this Multiplex CRISPR (CRISPRm) system, we selected an improved cellobiose utilization pathway in diploid yeast in a single round of mutagenesis and selection, which increased cellobiose fermentation rates by over 10-fold. Mutations recovered in the best cellodextrin transporters reveal synergy between substrate binding and transporter dynamics, and demonstrate the power of CRISPRm to accelerate selection experiments and discoveries of the molecular determinants that enhance biomolecule function

    Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.

    Get PDF
    Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells

    Genome editing technologies to fight infectious diseases

    Get PDF
    Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications

    Determining cellular CTCF and cohesin abundances to constrain 3D genome models.

    Get PDF
    Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here, we report the quantification of CTCF and cohesin, two causal regulators of topologically associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen et al., 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers and/or oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key to comprehend diverse biological processes
    • …
    corecore